共检索到 9

We present an innovative approach to understanding permafrost degradation processes through the application of new environment-based particle image velocimetry (E-PIV) to time-lapse imagery and correlation with synchronous temperature and rainfall measurements. Our new approach to extracting quantitative vector movement from dynamic environmental conditions that can change both the position and the color balance of each image has optimized the trade-off between noise reduction and preserving the authenticity of movement data. Despite the dynamic polar environments and continuous landscape movements, the E-PIV provides the first quantitative real-time associations between environmental drivers and the responses of permafrost degradation mechanism. We analyze four event-based datasets from an island southwest of Tuktoyaktuk, named locally as Imnaqpaaluk or Peninsula Point near Tuktoyaktuk, NWT, Canada, spanning a 5-year period from 2017 to 2022. The 2017 dataset focuses on the interaction during a hot dry summer between slope movement and temperature changes, laying the foundation for subsequent analyses. In 2018, two datasets significantly expand our understanding of typical failure mechanisms in permafrost slopes: one investigates the relationship between slope movement and rainfall, while the other captures an overhang collapse, providing a rare quantitative observation of an acute landscape change event. The 2022 dataset revisits the combination of potential rain and air temperature-related forcing to explore the environment-slope response relationship around an ice wedge, a common feature of ice-rich permafrost coasts. These analyses reveal both a direct but muted association with air temperatures and a detectable delayed slope response to the occurrence of rainfall, potentially reflective of the time taken for the warm rainwater to infiltrate through the active layer and affect the frozen ground. Whilst these findings also indicate that other factors are likely to influence permafrost degradation processes, the associations have significant implications given the projections for a warmer, wetter Arctic. The ability to directly measure permafrost slope responses offers exciting new potential to quantitatively assess the sensitivity of different processes of degradation for the first time, improving the vulnerability components of hazard risk assessments, guiding mitigation efforts, and better constraining future projections of erosion rates and the mobilization of carbon-rich material.

2025-01-23 Web of Science

Natural hazard processes, as an inherent component of mountain environments, react sensitively to global warming. The main drivers of these changes are alterations in the amount, intensity or type of precipitation, glacier melting, or thawing of permafrost ice. The hazard responses can involve a change in hazard intensity or frequency (increasing or decreasing), a shift in their location or, a shift from one type of hazard to another. As climate change impacts vary in space and time, this variability must be considered when planning measures to protect populations and infrastructure from hazardous processes. To support this, we developed a method for assessing the climate sensitivity of small individual rock releases and larger rockfall processes. The method is based on a fuzzy logic approach and uses highly resolved climate scenario data, allowing application on a regional or even larger scale. The application in a study area of 700 km2 in the central Valais (Switzerland) shows that the impacts of climate change on natural hazard processes can vary quite substantially across small spatial scales. Generally, an increase in rockfall frequency and magnitude is simulated under future warming scenarios, especially at higher altitudes. However, at lower elevations and on south-exposed slopes, a decrease in freeze-thaw cycles leads to a decrease in material availability. This knowledge is essential in discussions of how climate change should be considered in hazard and disaster management.

2024-09-15 Web of Science

This study uses a new dataset on gauge locations and catchments to assess the impact of 21st-century climate change on the hydrology of 221 high-mountain catchments in Central Asia. A steady-state stochastic soil moisture water balance model was employed to project changes in runoff and evaporation for 2011-2040, 2041-2070, and 2071-2100, compared to the baseline period of 1979-2011. Baseline climate data were sourced from CHELSA V21 climatology, providing daily temperature and precipitation for each subcatchment. Future projections used bias-corrected outputs from four General Circulation Models under four pathways/scenarios (SSP1 RCP 2.6, SSP2 RCP 4.5, SSP3 RCP 7.0, SSP5 RCP 8.5). Global datasets informed soil parameter distribution, and glacier ablation data were integrated to refine discharge modeling and validated against long-term catchment discharge data. The atmospheric models predict an increase in median precipitation between 5.5% to 10.1% and a rise in median temperatures by 1.9 degrees C to 5.6 degrees C by the end of the 21st century, depending on the scenario and relative to the baseline. Hydrological model projections for this period indicate increases in actual evaporation between 7.3% to 17.4% and changes in discharge between + 1.1% to -2.7% for the SSP1 RCP 2.6 and SSP5 RCP 8.5 scenarios, respectively. Under the most extreme climate scenario (SSP5-8.5), discharge increases of 3.8% and 5.0% are anticipated during the first and second future periods, followed by a decrease of -2.7% in the third period. Significant glacier wastage is expected in lower-lying runoff zones, with overall discharge reductions in parts of the Tien Shan, including the Naryn catchment. Conversely, high-elevation areas in the Gissar-Alay and Pamir mountains are projected to experience discharge increases, driven by enhanced glacier ablation and delayed peak water, among other things. Shifts in precipitation patterns suggest more extreme but less frequent events, potentially altering the hydroclimate risk landscape in the region. Our findings highlight varied hydrological responses to climate change throughout high-mountain Central Asia. These insights inform strategies for effective and sustainable water management at the national and transboundary levels and help guide local stakeholders.

2024-09-01 Web of Science

Significant increase in wintertime air temperature, especially the reduced cold extremes under climate change, might be beneficial to the winter survival of perennial crops. However, climate warming could result in less snowfall, reduced snow cover, as well as changes in climate conditions for fall hardening and winter thaws. How these changes might impact the risks of winter damages to overwintering crops, such as perennial forage crops requires a comprehensive assessment for proactively adapting to climate change in the agricultural sector, especially the beef and dairy industries. Based on the most up-to-date climate projections from a set of global climate models, we used a snow model and a suite of agroclimatic indices for perennial forage crops to assess potential changes in the risks of winter injury to perennial forage crops across Canada in the near-term (2030s), the mid-term (2050s), and the distant future (2070s). Our results show that the risk of exposure to extremely low temperatures (daily T-min < -15 degrees C) without snow protection is projected to decrease across Canada with improved conditions for fall hardening. However, winter thaws and rainfall are projected to increase, and this would increase the risk of winter injury due to loss of hardiness together with potential soil heaving and ice encasement.

2024-08-01 Web of Science

Mountains are highly diverse in areal extent, geological and climatic context, ecosystems and human activity. As such, mountain environments worldwide are particularly sensitive to the effects of anthropogenic climate change (global warming) as a result of their unique heat balance properties and the presence of climatically-sensitive snow, ice, permafrost and ecosystems. Consequently, mountain systems-in particular cryospheric ones-are currently undergoing unprecedented changes in the Anthropocene. This study identifies and discusses four of the major properties of mountains upon which anthropogenic climate change can impact, and indeed is already doing so. These properties are: the changing mountain cryosphere of glaciers and permafrost; mountain hazards and risk; mountain ecosystems and their services; and mountain communities and infrastructure. It is notable that changes in these different mountain properties do not follow a predictable trajectory of evolution in response to anthropogenic climate change. This demonstrates that different elements of mountain systems exhibit different sensitivities to forcing. The interconnections between these different properties highlight that mountains should be considered as integrated biophysical systems, of which human activity is part. Interrelationships between these mountain properties are discussed through a model of mountain socio-biophysical systems, which provides a framework for examining climate impacts and vulnerabilities. Managing the risks associated with ongoing climate change in mountains requires an integrated approach to climate change impacts monitoring and management.

2022-10-24 Web of Science

The impact of vegetation cover on the active-layer thermal regime was examined in an alpine meadow located in the permafrost region of Qinghai-Tibet over a three-year period. A high vegetation cover (93%) delayed thawing and freezing at a given depth relative to sites with lower covers (65%, 30% and 5%). Low vegetation covers exhibited greater annual variability in soil temperatures, and may be more sensitive to changes in air temperature. Low vegetation covers are also linked to higher thermal diffusivity and thermal conductivity in the soils. The maintenance of a high vegetation cover on alpine meadows reduces the impact of heat cycling on the permafrost, may minimise the impact of climate change and helps preserve the microenvironment of the soil. Copyright (C) 2010 John Wiley & Sons, Ltd.

2010-10-01 Web of Science

Earlier impact studies have suggested that climate change may severely alter the hydrological cycle in alpine terrain. However, these studies were based on the use of a single or a few climate scenarios only, so that the uncertainties of the projections could not be quantified. The present study helps to remedy this deficiency. For 2 Alpine river basins, the Thur basin (1700 km(2)) and the Ticino basin (1515 km(2)), possible future changes in the natural water budget relative to the 1981-2000 (Thur) and 1991-2000 (Ticino) baselines were investigated by driving the distributed catchment model WaSiM-ETH with a set of 23 regional climate scenarios for monthly mean temperature (T) and precipitation (P). The scenarios referred to 2081-2100 and were constructed by applying a statistical-downscaling technique to outputs from 7 global climate models. The statistical-downscaling scenarios showed changes in annual mean T between +1.3 and +4.8degreesC and in annual total P between -11 and +11%, with substantial variability between months and catchments. The simulated overall changes in the hydrological water cycle were qualitatively robust and independent of the choice of a particular scenario. In all cases, the projections showed strongly decreased snow-pack and shortened duration of snow cover, resulting in time-shifted and reduced runoff peaks. Substantial reductions were also found in summer flows and soil-water availability, in particular at lower elevations. However, the magnitudes and certain aspects of the projected changes depended strongly on the choice of scenario. In particular, quantitative projections of soil moisture in the summer season and of the runoff in both the summer and autumn seasons were found to be quite uncertain, mainly because of the uncertainty present in the scenarios for P. Our findings clearly demonstrate that quantitative assessments of hydrological changes in the Alps using only a small number of scenarios may yield misleading results. This work strengthens our confidence in the overall results obtained in earlier studies and suggests distinct shifts in future Alpine hydrological regimes, with potentially dramatic implications for a wide range of sectors.

2004-05-25 Web of Science

Increases in active layer thickness and permafrost degradation induced by climate warming may have profound socio-economic and eco-environmental consequences. Using a process-based model of Northern Ecosystem Soil Temperature (NEST) and data from climate records, remote sensing vegetation parameters, and soil features, we simulated soil temperature and active layer thickness (ALT) for a region in western Canada during the twentieth century. The results showed that the region-averaged annual mean soil temperatures at different depths responded to air temperature forcing consistently during the twentieth century, but with reduced magnitudes in both long-term trend and interannual variation. From the 1900s to 1986-1995, ALT increased 124 cm (or 79%) in the isolated and sporadic discontinuous permafrost zones, 59 cm (or 37%) in the extensive discontinuous permafrost zone, and 20 cm (or 21%) in the continuous permafrost zone on the basis of the current permafrost distribution map. The simulated results also indicated the disappearance of 17% of the permafrost in the discontinuous permafrost zone from the 1900s to the 1940s, and another 22% from the 1940s to 1986-1995. General agreement was found when comparing the simulated results with soil temperature records at climate stations, ALT at survey sites, and rates of permafrost degradation interpreted from aerial photographs. Owing to differences in spatial scales, spatial coverage, and time periods, many of the comparisons were not strict 1-to-1 comparisons and should instead be viewed as indirect supporting evidence.

2003-11-21 Web of Science

Climate change scenarios based on integrations of the Hadley Centre regional climate model HadRM2 are used to determine the change in the flow regime of the river Rhine by the end of the 21st century. Two scenarios are formulated: Scenario 1 accounting for the temperature increase (4.8degreesC on average over the basin) and changes in the mean precipitation, and Scenario 2 accounting additionally for changes in the temperature variance and an increase in the relative variability of precipitation. These scenarios are used as input into the RhineFlow hydrological model, a distributed water balance model of the Rhine basin that simulates river flow, soil moisture, snow pack and groundwater storage with a 10 d time step. Both scenarios result in higher mean discharges of the Rhine in winter (approx. + 30%), but lower mean discharges in summer (approx. -30%), particularly in August (approx. -50%). RhineFlow simulations also indicate that the variability of the 10 d discharges increases significantly, even if the variability of the climatic inputs remains unchanged. The annual maximum discharge increases in magnitude throughout the Rhine and tends to occur more frequently in winter, thus suggesting an increasing risk of winter floods. This is especially pronounced in Scenario 2. At the Netherlands-German border, the magnitude of the 20 yr maximum discharge event increases by 14% in Scenario 1 and by 29% in Scenario 2; the present-day 20 yr event tends to reappear every 5 yr in Scenario 1 and every 3 yr in Scenario 2. The frequency of occurrence of low and very low flows increases, in both scenarios alike.

2003-04-10 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-9条  共9条,1页