In contrast to boreal winter when extratropical seasonal predictions benefit greatly from ENSO-related teleconnections, our understanding of forecast skill and sources of predictability in summer is limited. Based on 40 years of hindcasts of the Canadian Seasonal to Interannual Prediction System, version 3 (CanSIPSv3), this study shows that predictions for the Northern Hemisphere summer surface air temperature are skillful more than 6 months in advance in several midlatitude regions, including eastern Europe-Middle East, central Siberia-Mongolia-North China, and the western United States. These midlatitude regions of statistically significant predictive skill appear to be connected to each other through an upper-tropospheric circumglobal wave train. Although a large part of the forecast skill for the surface air temperature and 500-hPa geopotential height is attributable to the linear trend associated with global warming, there is signifi- cant long-lead seasonal forecast skill related to interannual variability. Two additional idealized hindcast experiments are performed to help shed light on sources of the long-lead forecast skill using one of the CanSIPSv3 models and its uncoupled version. It is found that tropical ENSO-related sea surface temperature (SST) anomalies contribute to the forecast skill in the western United States, while land surface conditions in winter, including snow cover and soil moisture, in the Siberian and western U.S. regions have a delayed or long-lasting impact on the atmosphere, which leads to summer forecast skill in these regions. This implies that improving land surface initial conditions and model representation of land surface processes is crucial for the further development of a seasonal forecasting system.
Understanding terrestrial water storage (TWS) dynamics and associated drivers (e.g., climate variability, vegetation change, and human activities) across climate zones is essential for designing water resources management strategies in a changing environment. This study estimated TWS anomalies (TWSAs) based on the corrected Gravity Recovery and Climate Experiment (GRACE) gravity satellite data and derived driving factors for 214 watersheds across six climate zones in China. We evaluated the long-term trends and stationarities of TWSAs from 2004 to 2014 using the Mann-Kendall trend test and Augmented Dickey-Fuller stationarity test, respectively, and identified the key driving factors for TWSAs using the partial correlation analysis. The results indicated that increased TWSAs were observed in watersheds in tropical and subtropical climate zones, while decreased TWSAs were found in alpine and warm temperate watersheds. For tropical watersheds, increases in TWS were caused by increasing water conservation capacity as a result of large-scale plantations and the implementation of natural forest protection programs. For subtropical watersheds, TWS increments were driven by increasing precipitation and forestation. The decreasing tendency in TWS in warm temperate watersheds was related to intensive human activities. In the cold temperate zone, increased precipitation and soil moisture resulting from accelerated and advanced melting of frozen soils outweigh the above-ground evapotranspiration losses, which consequently led to the upward tendency in TWS in some watersheds (e.g., Xiaoxing'anling mountains). In the alpine climate zone, significant declines in TWS were caused by declined precipitation and soil moisture and increased evapotranspiration and glacier retreats due to global warming, as well as increased agriculture activities. These findings can provide critical scientific evidence and guidance for policymakers to design adaptive strategies and plans for watershed-scale water resources and forest management in different climate zones.
The Early 20th Century Warming (ETCW) in the northern high latitudes was comparable in magnitude to the present-day warming yet occurred at a time when the growth in atmospheric greenhouse gases was rising significantly less than in the last 40 years. The causes of ETCW remain a matter of debate. The key issue is to assess the contribution of internal variability and external natural and human impacts to this climate anomaly. This paper provides an overview of plausible mechanisms related to the early warming period that involve different factors of internal climate variability and external forcing. Based on the vast variety of related studies, it is difficult to attribute ETCW in the Arctic to any of major internal variability mechanisms or external forcings alone. Most likely it was caused by a combined effect of long-term natural climate variations in the North Atlantic and North Pacific with a contribution of the natural radiative forcing related to the reduced volcanic activity and variations of solar activity as well as growing greenhouse gases concentration in the atmosphere due to anthropogenic emissions.
Terrestrial hydrologic trends over the conterminous United States are estimated for 1980-2015 using the National Climate Assessment Land Data Assimilation System (NCA-LDAS) reanalysis. NCA-LDAS employs the uncoupled Noah version 3.3 land surface model at 0.125 degrees x 0.125 degrees forced with NLDAS-2 meteorology, rescaled Climate Prediction Center precipitation, and assimilated satellite-based soil moisture, snow depth, and irrigation products. Mean annual trends are reported using the nonparametric Mann-Kendall test at p < 0.1 significance. Results illustrate the interrelationship between regional gradients in forcing trends and trends in other land energy and water stores and fluxes. Mean precipitation trends range from +3 to +9 mm yr(-1) in the upper Great Plains and Northeast to -1 to -9 mm yr(-1) in the West and South, net radiation flux trends range from +0.05 to +0.20 W m(-2) yr(-1) in the East to -0.05 to -0.20 W m(-2) yr(-1) in the West, and U.S.-wide temperature trends average about +0.03 K yr(-1). Trends in soil moisture, snow cover, latent and sensible heat fluxes, and runoff are consistent with forcings, contributing to increasing evaporative fraction trends from west to east. Evaluation of NCA-LDAS trends compared to independent data indicates mixed results. The RMSE of U.S.-wide trends in number of snow cover days improved from 3.13 to 2.89 days yr(-1) while trend detection increased 11%. Trends in latent heat flux were hardly affected, with RMSE decreasing only from 0.17 to 0.16 W m(-2) yr(-1), while trend detection increased 2%. NCA-LDAS runoff trends degraded significantly from 2.6 to 16.1 mm yr(-1) while trend detection was unaffected. Analysis also indicated that NCA-LDAS exhibits relatively more skill in low precipitation station density areas, suggesting there are limits to the effectiveness of satellite data assimilation in densely gauged regions. Overall, NCA-LDAS demonstrates capability for quantifying physically consistent, U.S. hydrologic climate trends over the satellite era.
The early twentieth-century warming (EW; 1910-45) and the mid-twentieth-century cooling (MC; 1950-80) have been linked to both internal variability of the climate system and changes in external radiative forcing. The degree to which either of the two factors contributed to EW and MC, or both, is still debated. Using a two-box impulse response model, we demonstrate that multidecadal ocean variability was unlikely to be the driver of observed changes in global mean surface temperature (GMST) after AD 1850. Instead, virtually all (97%-98%) of the global low-frequency variability (>30 years) can be explained by external forcing. We find similarly high percentages of explained variance for interhemispheric and land-ocean temperature evolution. Three key aspects are identified that underpin the conclusion of this new study: inhomogeneous anthropogenic aerosol forcing (AER), biases in the instrumental sea surface temperature (SST) datasets, and inadequate representation of the response to varying forcing factors. Once the spatially heterogeneous nature of AER is accounted for, the MC period is reconcilable with external drivers. SST biases and imprecise forcing responses explain the putative disagreement between models and observations during the EW period. As a consequence, Atlantic multidecadal variability (AMV) is found to be primarily controlled by external forcing too. Future attribution studies should account for these important factors when discriminating between externally forced and internally generated influences on climate. We argue that AMV must not be used as a regressor and suggest a revised AMV index instead [the North Atlantic Variability Index (NAVI)]. Our associated best estimate for the transient climate response (TCR) is 1.57 K (+/- 0.70 at the 5%-95% confidence level).
The Antarctic Peninsula (AP) is often described as a region with one of the largest warming trends on Earth since the 1950s, based on the temperature trend of 0.54 degrees C/decade during 1951-2011 recorded at Faraday/Vernadslcy station. Accordingly, most works describing the evolution of the natural systems in the AP region cite this extreme trend as the underlying cause of their observed changes. However, a recent analysis (Turner et al., 2016) has shown that the regionally stacked temperature record for the last three decades has shifted from a warming trend of 032 degrees C/decade during 1979-1997 to a cooling trend of -0.47 degrees C/decade during 1999-2014. While that study focuses on the period 1979-2014, averaging the data over the entire AP region, we here update and reassess the spatially-distributed temperature trends and inter-decadal variability from 1950 to 2015, using data from ten stations distributed across the AP region. We show that Faraday/Vernadsky warming trend is an extreme case, circa twice those of the long-term records from other parts of the northern AP. Our results also indicate that the cooling initiated in 1998/1999 has been most significant in the N and NE of the AP and the South Shetland Islands (>0.5 degrees C between the two last decadeS), modest in the Orkney Islands, and absent in the SW of the AP. This recent cooling has already impacted the cryosphere in the northern AP, including slow-down of glacier recession, a shift to surface mass gains of the peripheral glacier and a thinning of the active layer of permafrost in northern AP islands. (C) 2016 Elsevier B.V. All rights reserved.
The Three-River Headwater Region (TRHR) is the source of the Yangtze River, Yellow River, and Lancang River, which is significant to fresh water resources in China and Asia. The ecosystem in the TRHR has undergone great changes in recent decades owing to dramatic climate change and tremendous human pressure. This study focused on assessing the ecosystem change in the TRHR from 2005 to 2012, which was indicated by ecosystem pattern, quality, and service. Based on the actual observation records and widely used biophysical models including Revised Universal Soil Loss Equation (RUSLE), Revised Wind Erosion Equation (RWSQ), and Carnegie-Ames-Stanford Approach (CASA) models, this study assessed the ecosystem services including soil conservation, water conservation, carbon sequestration, and species conservation. The climate variability and ecological rehabilitation promoted ecological restoration, which was indicated by vegetation cover, productivity (carbon sequestration), streamflow, and habitat area increase. However, the increasing precipitation intensified water erosion by enhancing rainfall erosivity, and increasing temperature induced glacier melting and permafrost degradation, which posed a threat to the sustainable development of regional environment. The ecosystem change is the combined result of ecological rehabilitation and climate variability, the effectiveness of ecological conservation efforts is uneven, indicated by coexistence of restoration and degradation, and is likely a temporary improvement rather than fundamental change. The experience of ecological rehabilitation and ecosystem change in the TRHR exemplified the ecological conservation should take climate variability into account, and facilitate synergies on multiple ecosystem services in order to maximize human well-being and preserve its natural ecosystems. (C) 2016 Elsevier B.V. All rights reserved.
The impacts of absorbing aerosols on global climate are not completely understood. This paper presents the results of idealized experiments conducted with the Community Atmosphere Model, version 4 (CAM4), coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semidirect effects. CAM4-SOM was forced with 0, 1x, 2x, 5x, and 10x an estimate of the present day concentration of BC while maintaining the estimated present day global spatial and vertical distribution. The top-of-atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semidirect effect for the 1 x BC experiment is positive but becomes increasingly negative for higher BC concentrations. The global-average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K W-1 m(2) when the semidirect effects are accounted for and 0.22 K W-1 m(2) with only the direct effects considered. Global-average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4% W-1 m(2). The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the intertropical convergence zone in the simulations at a rate of 4 degrees PW-1. Global-average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the southern tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.
Increasing global warming has led to the incremental retreat of glaciers, which in turn affects the water supply of the rivers dependent on glacier melts. This is further affected by the increases in flooding that is attributable to heavy rains during the snowmelt season. An accurate estimation of streamflow is important for water resources planning and management. Therefore, this paper focuses on improving the streamflow forecast for Kaidu River Basin, situated at the north fringe of Yanqi basin on the south slope of the Tianshan Mountains in Xinjiang, China. The interannual and decadal scale oceanic-atmospheric oscillations, i.e.,Pacific decadal oscillation (PDO), North Atlantic oscillation (NAO), Atlantic multidecadal oscillation (AMO), and El Nino-southern oscillation (ENSO), are used to generate streamflow volumes for the peak season (April-October) and the water year, which is from October of the previous year to September of the current year for a period from 1955-2006. A data-driven model, least-square support vector machine (LSSVM), was developed that incorporated oceanic atmospheric oscillations to increase the streamflow lead time. Based on performance measures, predicted streamflow volumes are in agreement with the measured volumes. Sensitivity analyses, performed to evaluate the effect of individual and coupled oscillations, revealed a stronger presence of coupled PDO, NAO, and ENSO indices within the basin. The AMO index shows a pronounced effect when individually compared with the other oscillation modes. Additionally, model-forecasted streamflow is better than that for climatology. Overall, very good streamflow predictions are obtained using the SVM modeling approach. Furthermore, the LSSVM streamflow predictions outperform the predictions obtained from the most widely used feed-forward back-propagation models, artificial neural network, and multiple linear regression. The current paper contributes in improving the streamflow forecast lead time, and identified a coupled climate signal within the basin. The increased lead time can provide useful information to water managers in improving the planning and management of water resources within the Kaidu River Basin. (C) 2013 American Society of Civil Engineers.
The potential impacts of climate change on northern groundwater supplies were examined at a fractured-marble mountain aquifer near Nome, Alaska. Well water surface elevations (WSE) were monitored from 2004-2009 and analyzed with local meteorological data. Future aquifer response was simulated with the Pan-Arctic Water Balance Model (PWBM) using forcings (air temperature and precipitation) derived from fifthgeneration European Centre Hamburg Model (ECHAM5) global circulation model climate scenarios for extreme and modest increases in greenhouse gases. We observed changes in WSE due to the onset of spring snowmelt, low intensity and high intensity rainfall events, and aquifer head recession during the winter freeze period. Observed WSE and snow depth compared well with PWBM-simulated groundwater recharge and snow storage. Using ECHAM5-simulated increases in mean annual temperature of 4-8 degrees C by 2099, the PWBM predicted that by 2099 later freeze-up and earlier snowmelt will decrease seasonal snow cover by one to two months. Annual evapotranspiration and precipitation are predicted to increase 27-40% (55-81 mm) and 33-42% (81-102 mm), respectively, with the proportion of snowfall in annual precipitation decreasing on average 9-25% (p < 0.05). The amount of snowmelt is not predicted to change significantly by 2099; however, a decreasing trend is evident from 2060 in the extreme ECHAM5 greenhouse gas scenario. Increases in effective precipitation were predicted to be great enough to sustain sufficient groundwater recharge.