共检索到 6

Due to climate change the drop in spring-water discharge poses a serious issue in the Himalayan region, especially in the higher of Himachal Pradesh. This study used different climatic factors along with long-term rainfall data to understand the decreasing trend in spring-water discharge. It was determined which climate parameter was most closely correlated with spring discharge volumes using a general as well as partial correlation plot. Based on 40 years (1981-2021) of daily average rainfall data, a rainfall-runoff model was utilised to predict and assess trends in spring-water discharge using the MIKE 11 NAM hydrological model. The model's effectiveness was effectively proved by the validation results (NSE = 0.79, R2 = 0.944, RMSE = 0.23, PBIAS = 32%). Model calibration and simulation revealed that both observed and simulated spring-water runoff decreased by almost 29%, within the past 40 years. Consequently, reduced spring-water discharge is made sensitive to the hydrological (groundwater stress, base flow, and stream water flow) and environmental entities (drinking water, evaporation, soil moisture, and evapotranspiration). This study will help researchers and policymakers to think and work on the spring disappearance and water security issues in the Himalayan region.

2024-12-31 Web of Science

Based on glacio-meteorological records, 7 years of in-situ mass balance data, and a temperature-index model, the long-term annual and seasonal mass balances of Shiyi Glacier in the northeast Tibetan Plateau (TP) were reconstructed from 1963/64 to 2016/17. Variations were then linked to local climatic and macroscale circulation changes. The model was calibrated based on in-situ mass balance data and was driven by daily air temperature and precipitation data recorded at nearby alpine meteorological stations. The results show that the reconstructed annual mass balance experienced an overall downward trend over the past 54 years, with a remarkably high mass loss rate during 1990/91-2016/17. Analysis of mass balance sensitivity and local climatic changes shows that the pronounced mass loss since the 1990s can be mainly attributed to cumulative positive temperature increases caused by air temperature increases and prolongation of the ablation season. From the perspective of macroscale circulation, the reconstructed annual mass balance values correlate well with zonal wind speeds (June to September) in the glacierized region. For the positive/negative phase of the annual mass balance, an inverse spatial pattern in relation to geopotential height change (low/high-pressure centres) and corresponding conversion of cyclonic/anti-cyclonic circulation were present in northern hemisphere mid-latitudes. Comparative analysis of existing long-term mass balance series over the TP indicates that asynchronous climatic changes in the different glacierized regions led to inconsistent interannual fluctuations in glacier mass balance.

2021-02

Multiple studies demonstrate Northwest Alaska and the Alaskan North Slope are warming. Melting permafrost causes surface destabilization and ecological changes. Here, we use thermistors permanently installed in 1996 in a borehole in northwestern Alaska to study past, present, and future ground and subsurface temperature change, and from this, forecast future permafrost degradation in the region. We measure and model Ground Surface Temperature (GST) warming trends for a 10 year period using equilibrium Temperature-Depth (TD) measurements from borehole T96-012, located near the Red Dog Mine in northwestern Alaska part of the Arctic ecosystem where a continuous permafrost layer exists. Temperature measurements from 1996 to 2006 indicate the subsurface has clearly warmed at depths shallower than 70 m. Seasonal climate effects are visible in the data to a depth of 30 m based on a visible sinusoidal pattern in the TD plots that correlate with season patterns. Using numerical models constrained by thermal conductivity and temperature measurements at the site, we show that steady warming at depths of similar to 30 to 70 m is most likely the direct result of longer term (decadal-scale) surface warming. The analysis indicates the GST in the region is warming at similar to 0.44 +/- 0.05 degrees C/decade, a value consistent with Surface Air Temperature (SAT) warming of similar to 1.0 +/- 0.8 degrees C/decade observed at Red Dog Mine, but with much lower uncertainty. The high annual variability in the SAT signal produces significant uncertainty in SAT trends. The high annual variability is filtered out of the GST signal by the low thermal diffusivity of the subsurface. Comparison of our results to recent permafrost monitoring studies suggests changes in latitude in the polar regions significantly impacts warming rates. North Slope average GST warming is similar to 0.9 +/- 0.5 degrees C/decade, double our observations at RDM, but within error. The RDM warming rate is within the warming variation observed in eastern Alaska, 0.36-0.71 degrees C/decade, which suggests changes in longitude produce a smaller impact but have warming variability likely related to ecosystem, elevation, microclimates, etc. changes. We also forward model future warming by assuming a 1D diffusive heat flow model and incorporating latent heat effects for permafrost melting. Our analysis indicates similar to 1 to 4 m of loss at the upper permafrost boundary, a similar to 145 +/- 100% increase in the active layer thickness by 2055. If warming continues at a constant rate of similar to 0.44 +/- 0.05 degrees C/decade, we estimate the 125 m thick zone of permafrost at this site will completely melt by similar to 2150. Permafrost is expected to melt by similar to 2200, similar to 2110, or similar to 2080, if the rate of warming is altered to 0.25, 0.90, or 2.0 degrees C/decade, respectively, as an array of different climate models suggest. Since our model assumes no advection of heat (a more efficient heat transport mechanism), and no accelerated warming, our current prediction of complete permafrost loss by 2150 may overestimate the residence time of permafrost in this region of Northwest Alaska. (C) 2016 The Authors. Published by Elsevier B.V.

2017-01-01 Web of Science

To better understand the linkage between lake area change, permafrost conditions and intra-annual and inter-annual variability in climate, we explored the temporal and spatial patterns of lake area changes for a 422382-ha study area within Yukon Flats, Alaska using Landsat images of 17 dates between 1984 and 2009. Only closed basin lakes were used in this study. Among the 3529 lakes greater than 1 ha, closed basin lakes accounted for 65% by number and 50% by area. A multiple linear regression model was built to quantify the temporal change in total lake area with consideration of its intra-annual and inter-annual variability. The results showed that 80.7% of lake area variability was attributed to intra-annual and inter-annual variability in local water balance and mean temperature since snowmelt (interpreted as a proxy for seasonal thaw depth). Another 14.3% was associated with long-term change. Among 2280 lakes, 350 lakes shrank, and 103 lakes expanded. The lakes with similar change trends formed distinct clusters, so did the lakes with similar short term intra-annual and inter-annual variability. By analysing potential factors driving lake area changes including evaporation, precipitation, indicators for regional permafrost change, and flooding, we found that ice-jam flooding events were the most likely explanation for the observed temporal pattern. In addition to changes in the frequency of ice jam flooding events, the observed changes of individual lakes may be influenced by local variability in permafrost distributions and/or degradation. Copyright (c) 2012 John Wiley & Sons, Ltd.

2014-01-30 Web of Science

A quantification of coastal erosion processes on a clay cliff in a cold temperate region was conducted. This study was based on a network of markers that were measured on a monthly basis from 1998 to 2003. During that period, the average retreat rate of the cliff was 1.5 m/y. Our results demonstrate that weathering is a more significant cliff retreat factor than hydrodynamic processes on fine sediment shorelines. This statement opposes conventional understanding. In fact, 65% of the annual cliff retreat took place through the winter season when the waves could not reach the foot of the cliff because of an ice foot. This erosion is caused by cryogenic processes in winter, particularly through freeze-thaw cycles, whereas desiccation and wave undercutting contributed respectively for 20% and 15% of the total annual retreat. The field measurements conducted before and after major storms, especially on October 29, 2000, illustrated that wave undercutting was negligible for the clay cliff. These results do not corroborate with previous studies showing that cliff erosion is mostly controlled by wave undercutting with negligible winter erosion. In a context of global warming, the intensity of cryogenic processes can become more important due to milder winters, an increase in the number of freeze-thaw cycles, and the reduction of the ice foot and snow cover (especially on south-facing cliffs directly exposed to solar radiation). This study demonstrates that the evaluation of sensitivity of coastal systems to climatic change should not be done just for sea-level rise and increased storminess, but also for other climatic parameters. Future research should also take into account approaches combining the studies of marine and terrestrial erosion processes.

2008-01-01 Web of Science

The mapping and monitoring of the sea ice variability in the polar regions is of prime importance for global climate modelling. Apart from sea ice, spatial snow cover variability and depth estimates are needed for accurate assessment of many climate parameters required in the ice-ocean models. Mapping and analysing the spatial and temporal variability of Antarctic sea ice and snow cover are therefore highly important for polar ice-pack studies in the global climate cycle. The present study has been carried out mainly for sea ice mapping surrounding Antarctica using Special Sensor Microwave Imager (SSM/I) passive microwave data during its depletion phase (November 2001 to January 2002). Sea ice concentrations and snow depths over the Antarctic sea ice have been calculated and their temporal variation patterns studied. The overall extents under all ice concentration categories during different months over the study period have decreased in the order of 1 to 3 million km(2) in comparison to the sea ice concentration categories during 1978-87 period. The thermal conductivity of snow is about an order of magnitude less than the sea ice. Hence the presence of small amount of snow on sea ice can greatly affect the heat flux between the sea surface and atmosphere. Depletion in snow depths over sea ice (from 1988-94 to 2001-02) could be observed particularly in December, though not much change has been observed in November and January. These changes (shrinking ice covers/depletion in sea ice concentration) can be attributed to some locally changing weather patterns in the Antarctic continent as well as due to regional phenomenon like global warming.

2006-03-25 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页