共检索到 2

The spatiotemporal characteristics of aerosol direct radiative forcing (RF) and the relative contributions from aerosol species, as well as the impacts of cloud coverage and relative humidity on aerosol direct RF were quantified in East Asia using a regional climate model. Generally, the total aerosol produces net RFs of -12.78 W m- 2 at surface, 1.72 W m- 2 at TOA (top-of-atmosphere), and atmospheric heating of 14.50 W m- 2. It was found that dust, black carbon, and sulfate made dominant contributions to the total RF at surface and TOA, and all aerosol species induced atmospheric heating, whereas more than 96% of which was induced by dust and black carbon. The remarkably seasonally decreasing tendency of the total and the absorbing aerosol RFs was found from spring to winter at surface. Moreover, dust contributes relatively larger to the positive TOA RF and to the atmospheric heating in spring and summer, which were weakened and smaller than black carbon in other seasons. Sensitivity studies further demonstrated cloud strengthens the dust and black carbon direct RF and weakens the other species direct RF at TOA, while induces weak direct RFs of all aerosol species at surface. Particularly, cloud induced larger reduction in dust longwave RF than shortwave leads to remarkable enhanced net surface direct RF of dust, especially in JJA. The aerosol swelling effect induced by relative humidity strengthens aerosol direct RF at both TOA and surface. The percentage changes in aerosol RF and its seasonal amplitude by cloud are considered larger at TOA than surface, however, the effects of relative humidity distribute relatively uniform vertically. Meteorological factors impact on scattering aerosols direct RF is assumed larger than absorbing aerosols. The impacts of cloud on aerosol direct RF are compared to the relative humidity and are supposed to be more important at TOA and surface.

期刊论文 2022-08-01 DOI: 10.1016/j.atmosres.2022.106168 ISSN: 0169-8095

The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events.

期刊论文 2016-10-18 DOI: 10.1073/pnas.1525746113 ISSN: 0027-8424
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页