共检索到 3

Permafrost active layer soils are harsh environments with thaw/freeze cycles and sub-zero temperatures, harboring diverse microorganisms. However, the distribution patterns, assembly mechanism, and driving forces of soil microeukaryotes in permafrost remain largely unknown. In this study, we investigated microeukaryotes in permafrost active layer across the Qinghai-Tibet Plateau (QTP) using 18S rRNA gene sequencing. The results showed that the microbial eukaryotic communities were dominated by Nematozoa, Ciliophora, Ascomycota, Cercozoa, Arthropoda, and Basidiomycota in terms of relative abundance and operational taxonomic unit (OTU) richness. Nematozoa had the highest relative abundance, while Ciliophora had the highest OTU richness. These phyla had strong interactions between each other. Their alpha diversity and community structure were differently influenced by the factors associated to location, climate, and soil properties, particularly the soil properties. Significant but weak distance-decay relationships with different slopes were established for the communities of these dominant phyla, except for Basidiomycota. According to the null model, community assemblies of Nematozoa and Cercozoa were dominated by heterogeneous selection, Ciliophora and Ascomycota were dominated by dispersal limitation, while Arthropoda and Basidiomycota were highly dominated by non-dominant processes. The assembly mechanisms can be jointly explained by biotic interactions, organism treats, and environmental influences. Modules in the co-occurrence network of the microeukaryotes were composed by members from different taxonomic groups. These modules also had interactions and responded to different environmental factors, within which, soil properties had strong influences on these modules. The results suggested the importance of biological interactions and soil properties in structuring microbial eukaryotic communities in permafrost active layer soil across the QTP.

2023-11-01 Web of Science

Global climate change has altered soil freeze-thaw (FT) patterns but less is known about the responses of soil microbial diversity, soil multifunctionality, and their relationship to FT events. Daxing'an Mountains in China, located in high-latitude permafrost ecosystems, are one of the most sensitive areas to climate change and FT patterns. Here, simulated FT conditions were used to determine the impact of FT events on soil microbial diversity and multifunctionality as well as to elucidate the relationships between bacterial and fungal diversity and multifunctionality. Community composition, alpha-diversity index, and co-occurrence network complexity of fungi significantly changed during FT events, whereas the same parameters did not exhibit significant alterations for bacteria. Soil fungal communities were more sensitive to FT events than soil bacterial communities. FT events significantly affected soil multifunctionality. A random forest analysis showed that the fungal diversity index was the main predictor of soil multifunctionality. Moreover, changes in soil abiotic factors also affected the relationship between soil microbial diversity and multifunctionality. Soil multifunctionality was also constrained by fungal community network complexity. Structural equation model showed that the FT amplitude and FT cycles exerted different impact paths on soil multifunctionality. The effect of FT cycles on soil multifunctionality (0.289) was greater than that of FT amplitude (0.080). As global climate change is expected to accelerate in the future, extension of the FT period in high-altitude and high-latitude regions may have a severe impact on soil function compared to extreme low temperatures caused by the presence of thin snow cover.

2022-07-01 Web of Science

One of the most significant environmental changes across the Tibetan Plateau (TP) is the rapid lake expansion. The expansion of thermokarst lakes affects the global biogeochemical cycles and local climate regulation by rising levels, expanding area, and increasing water volumes. Meanwhile, microbial activity contributes greatly to the biogeochemical cycle of carbon in the thermokarst lakes, including organic matter decomposition, soil formation, and mineralization. However, the impact of lake expansion on distribution patterns of microbial communities and methane cycling, especially those of water and sediment under ice, remain unknown. This hinders our ability to assess the true impact of lake expansion on ecosystem services and our ability to accurately investigate greenhouse gas emissions and consumption in thermokarst lakes. Here, we explored the patterns of microorganisms and methane cycling by investigating sediment and water samples at an oriented direction of expansion occurred from four points under ice of a mature-developed thermokarst lake on TP. In addition, the methane concentration of each water layer was examined. Microbial diversity and network complexity were different in our shallow points (MS, SH) and deep points (CE, SH). There are differences of microbial community composition among four points, resulting in the decreased relative abundances of dominant phyla, such as Firmicutes in sediment, Proteobacteria in water, Thermoplasmatota in sediment and water, and increased relative abundance of Actinobacteriota with MS and SH points. Microbial community composition involved in methane cycling also shifted, such as increases in USC gamma, Methylomonas, and Methylobacter, with higher relative abundance consistent with low dissolved methane concentration in MS and SH points. There was a strong correlation between changes in microbiota characteristics and changes in water and sediment environmental factors. Together, these results show that lake expansion has an important impact on microbial diversity and methane cycling.

2022-04
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页