共检索到 6

The Loess Plateau, located in Gansu Province, is an important energy base in China because most of the oil and gas resources are distributed in Gansu Province. In the last 40 a, ecological environment in this region has been extremely destroyed due to the over-exploitation of crude-oil resources. Remediation of crude-oil contaminated soil in this area remains to be a challenging task. In this study, in order to elucidate the effects of organic compost and biochar on phytoremediation of crude-oil contaminated soil (20 g/kg) by Calendula officinalis L., we designed five treatments, i.e., natural attenuation (CK), planted C. officinalis only (P), planted C. officinalis with biochar amendment (PB), planted C. officinalis with organic compost amendment (PC), and planted C. officinalis with co-amendment of biochar and organic compost (PBC). After 152 d of cultivation, total petroleum hydrocarbons (TPH) removal rates of CK, P, PB, PC and PBC were 6.36%, 50.08%, 39.58%, 73.10% and 59.87%, respectively. Shoot and root dry weights of C. officinalis significantly increased by 172.31% and 80.96% under PC and 311.61% and 145.43% under PBC, respectively as compared with P (P<0.05). Total chlorophyll contents in leaves of C. officinalis under P, PC and PBC significantly increased by 77.36%, 125.50% and 79.80%, respectively (P<0.05) as compared with PB. Physical-chemical characteristics and enzymatic activity of soil in different treatments were also assessed. The highest total N, total P, available N, available P and SOM occurred in PC, followed by PBC (P<0.05). C. officinalis rhizospheric soil dehydrogenase (DHA) and polyphenol oxidase (PPO) activities in PB were lower than those of other treatments (P<0.05). The values of ACE (abundance-based coverage estimators) and Chao indices for rhizospheric bacteria were the highest under PC followed by PBC, P, PB and CK (P<0.05). However, the Shannon index for bacteria was the highest under PC and PBC, followed by P, PB and CK (P<0.05). In terms of soil microbial community composition, Proteiniphilum, Immundisolibacteraceae and Solimonadaceae were relatively more abundant under PC and PBC. Relative abundances of Pseudallescheria, Ochroconis, Fusarium, Sarocladium, Podospora, Apodus, Pyrenochaetopsis and Schizpthecium under PC and PBC were higher, while relative abundances of Gliomastix, Aspergillus and Alternaria were lower under PC and PBC. As per the nonmetric multidimensional scaling (NMDS) analysis, application of organic compost significantly promoted soil N and P contents, shoot length, root vitality, chlorophyll ratio, total chlorophyll, abundance and diversity of rhizospheric soil microbial community in C. officinalis. A high pH value and lower soil N and P contents induced by biochar, altered C. officinalis rhizospheric soil microbial community composition, which might have restrained its phytoremediation efficiency. The results suggest that organic compost-assisted C. officinalis phytoremediation for crude-oil contaminated soil was highly effective in the Loess Plateau, China.

期刊论文 2022-10-01 DOI: http://dx.doi.org/10.1007/s40333-021-0011-7 ISSN: 1674-6767

While the composition and diversity of soil microbial communities play a central and essential role in biogeochemical cycling of nutrients, they are known to be shaped by the physical and chemical properties of soils and various environmental factors. This study investigated the composition and diversity of microbial communities in 48 samples of seasonally frozen soils collected from 16 sites in an alpine wetland region (Lhasa River basin) and an alpine forest region (Nyang River basin) on the Tibetan Plateau using high-throughput sequencing that targeted the V3-V4 region of 16S rRNA gene. The dominant soil microbial phyla included Proteobacteria, Acidobacteria, and Actinobacteria in the alpine wetland and alpine forest ecosystems, and no significant difference was observed for their microbial composition. Linear discriminant analysis Effect Size (LEfSe) analysis showed that significant enrichment of Hymenobacteraceae and Cytophagales (belonging to Bacteroidetes) existed in the alpine wetland soils, while the alpine forest soils were enriched with Alphaproteobacteria (belonging to Proteobacteria), suggesting that these species could be potential biomarkers for alpine wetland and alpine forest ecosystems. Results of redundancy analysis (RDA) suggest that the microbial community diversity and abundance in the seasonally frozen soils on the Tibetan Plateau were mainly related to the total potassium in the alpine wetland ecosystem, and available potassium and soil moisture in the alpine forest ecosystem, respectively. In addition, function prediction analysis by Tax4Fun revealed the existence of potential functional pathways involved in human diseases in all soil samples. These results provide insights on the structure and function of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau, while the potential risk to human health from the pathogenic microbes in the seasonally frozen soils deserves attention. (C) 2020 Elsevier B.V. All rights reserved.

期刊论文 2020-12-10 DOI: 10.1016/j.scitotenv.2020.141358 ISSN: 0048-9697

Boreal forests in permafrost zone store significant quantities of carbon that are readily threatened by increases in fire frequency and temperature due to climate change. Soil carbon is primarily released by microbial decomposition that is sensitive to environmental conditions. Under increasing disturbances of wildfire, there is a pressing need to understand interactions between wildfires and microbial communities, thereby to predict soil carbon dynamics. Using Illumina MiSeq sequencing of bacterial 16S rDNA and GeoChip 5.0K, we compared bacterial communities and their potential functions at surface and near-surface permafrost layers across a chronosequence ( > 100 years) of burned forests in a continuous permafrost zone. Postfire soils in the Yukon and the Northwest Territories, Canada, showed a marked increase in active layer thickness. Our results showed that soil bacterial community compositions and potential functions altered in 3-year postfire forest (Fire(3)) comparing to the unburned forests. The relative abundance of Ktedonobacteria (Chloroflexi) was higher in Fire(3) surface soils, while Alphaproteobacteria and Betaproteobacteria (Proteobacteria) were more abundant in unburned ones. Approximately 37% of the variation in community composition can be explained by abiotic variables, whereas only 2% by biotic variables. Potential functional genes, particularly for carbon degradation and anammox, appeared more frequent in Fire 3 than in unburned soils. Variations in functional gene pools were mainly driven by environmental factors (39%) and bacterial communities (20%; at phylum level). Unexpectedly, wildfire solely altered bacterial communities and their functional potentials of the surface layers, not the near-permafrost layers. Overall, the response of bacterial community compositions and functions to wildfire and the environment provides insights to re-evaluate the role of bacteria in decomposition.

期刊论文 2020-12-01 DOI: 10.1016/j.apsoil.2020.103713 ISSN: 0929-1393

Global warming has greatly altered winter snowfall patterns, and there is a trend towards increasing winter snow in semi-arid regions in China. Winter snowfall is an important source of water during early spring in these water-limited ecosystems, and it can also affect nutrient supply. However, we know little about how changes in winter snowfall will affect ecosystem productivity and plant community structure during the growing season. Here, we conducted a 5-year winter snow manipulation experiment in a temperate grassland in Inner Mongolia. We measured ecosystem carbon flux from 2014 to 2018 and plant biomass and species composition from 2015 to 2018. We found that soil moisture increased under deepened winter snow in early growing season, particularly in deeper soil layers. Deepened snow increased the net ecosystem exchange of CO2 (NEE) and reduced intra- and inter-annual variation in NEE. Deepened snow did not affect aboveground plant biomass (AGB) but significantly increased root biomass. This suggested that the enhanced NEE was allocated to the belowground, which improved water acquisition and thus contributed to greater stability in NEE in deep-snow plots. Interestingly, the AGB of grasses in the control plots declined over time, resulting in a shift towards a forb-dominated system. Similar declines in grass AGB were also observed at three other locations in the region over the same time frame and are attributed to 4 years of below-average precipitation during the growing season. By contrast, grass AGB was stabilized under deepened winter snow and plant community composition remained unchanged. Hence, our study demonstrates that increased winter snowfall may stabilize arid grassland systems by reducing resource competition, promoting coexistence between plant functional groups, which ultimately mitigates the impacts of chronic drought during the growing season.

期刊论文 2020-05-01 DOI: 10.1111/gcb.15051 ISSN: 1354-1013

The Arctic tundra is warming rapidly, yet the exact mechanisms linking warming and observed ecological changes are often unclear. Understanding mechanisms of change requires long-term monitoring of multiple ecological parameters. Here, we present the findings of a collaboration between government scientists, local people, park rangers, and academic researchers that provide insights into changes in plant composition, phenology, and growth over 18 yr on Qikiqtaruk-Herschel Island, Canada. Qikiqtaruk is an important focal research site located at the latitudinal tall shrub line in the western Arctic. This unique ecological monitoring program indicates the following findings: (1) nine days per decade advance of spring phenology, (2) a doubling of average plant canopy height per decade, but no directional change in shrub radial growth, and (3) a doubling of shrub and graminoid abundance and a decrease by one-half in bare ground cover per decade. Ecological changes are concurrent with satellite-observed greening and, when integrated, suggest that indirect warming from increased growing season length and active layer depths, rather than warming summer air temperatures alone, could be important drivers of the observed tundra vegetation change. Our results highlight the vital role that long-term and multi-parameter ecological monitoring plays in both the detection and attribution of global change.

期刊论文 2019-05-01 DOI: 10.1002/ecm.1351 ISSN: 0012-9615

Global warming is often associated with changes in abiotic factors and the community composition across alpine ecosystems. However, the way that an altered community dynamics affects the ecosystem carbon (C) balance remains unclear. A warming experiment was initiated in 2010 to assess the potential impacts of warming-induced changes in the community composition and how these changes affect the C balance in mountain meadows located in the permafrost region of the Qinghai-Tibet Plateau (China). Under warming conditions, we found an increased importance value (IV) of forbs and grasses of 4.9%, in contrast to the IV of sedges, which decreased by 4.4%. For forbs and grasses, the IV showed positive exponential relationships with gross ecosystem production and ecosystem respiration, while negative correlations were found for sedges. These results indicate that a slight change in the IVs of sedges, grasses and forbs favors C sequestration. Moreover, the warming treatment significantly increased the mean height of sedges, grasses and forbs, and the net ecosystem exchange increase was positively correlated with the increase in the mean height of grasses and forbs. In summary, the warming-induced shift toward forb and grass species and the increase in plant height strengthen the C uptake capacity of alpine meadow ecosystems.

期刊论文 2017-04-01 DOI: 10.1088/1748-9326/aa6508 ISSN: 1748-9326
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页