Soil microorganisms play a pivotal role in the biogeochemical cycles of alpine meadow ecosystems, especially in the context of permafrost thaw. However, the mechanisms driving microbial community responses to environmental changes, such as variations in active layer thickness (ALT) of permafrost, remain poorly understood. This study utilized next-generation sequencing to explore the composition and co-occur rence patterns of soil microbial communities, focusing on bacteria and micro-eukaryotes along a permafrost thaw gradient. The results showed a decline in bacterial alpha diversity with increasing permafrost thaw, whereas micro-eukaryotic diversity exhibi ted an opposite trend. Although changes in microbial community composition were observed in permafrost and seasonally frozen soils, these shifts were not statistically significant. Bacterial communities exhibited a greater differentiation between frozen and seasonally frozen soils, a pattern not mirrored in eukaryotic communities. Linear discriminant analysis effect size analysis revealed a higher number of potential biomark ers in bacterial communities compared with micro-eukaryotes. Bacterial co-occurrence networks were more complex, with more nodes, edges, and positive linkages than those of micro-eukaryotes. Key factors such as soil texture, ALT, and bulk density significantly influenced bacterial community structures, particularly affecting the relative abundan ces of the Acidobacteria, Proteobacteria, and Actinobacteria phyla. In contrast, fungal communities (e.g., Nucletmycea, Rhizaria, Chloroplastida, and Discosea groups) were more affected by electrical conductivity, vegetation coverage, and ALT. This study highlights the distinct responses of soil bacteria and micro-eukaryotes to permafrost thaw, offering insights into microbial community stability under global climate change.