共检索到 2

Recent climatic changes significantly affected forest ecosystems in northern Eurasia. Trees growing in Siberia are very sensitive to climate change due to strong temperature limitation of their growth. Our study covers high-latitude (northeastern Yakutia, eastern Taimyr, central Evenkia) and high-altitude (Russian Altai) zones in Eurasia, where tree-ring parameters (tree-ring width, cell-wall thickness, and maximum latewood density) mainly record summer air temperature variations. To reveal the impact of moisture changes (e.g., amount of precipitation, vapor pressure deficit, relative humidity and potential evapotranspiration) on tree growth in Siberian forest ecosystems, we evaluated delta C-13 in tree-ring cellulose over the past century. We found that at all the study sites mainly June-July precipitation and June-July evapotranspiration affect larch radial growth, while the strongest influence of vapor pressure deficit on the delta C-13 was observed in northeastern Yakutia. Further increase of vapor pressure deficit and rise of air temperature in the coming decades in Siberian regions will probably lead to drought and related forest mortality even under additional source of water due to permafrost thaw.

期刊论文 2021-09-01 DOI: 10.1134/S1067413621050052 ISSN: 1067-4136

The boreal forest accounts for approximately 22% of the Northern Hemisphere landmass with nearly 40% of this huge biome growing on continuously frozen soils. Projected climate change leading to degradation of permafrost and increasing drought situation at high latitudes in Eurasia will seriously affect productivity of forests on permafrost. Here we present the results of an on-going research of tree radial growth in the midst of the permafrost zone in Siberia, Russia (Tura region, 64 degrees N, 100 degrees E, 140-610 m a.s.1.). Tree-ring width and density chronologies of Gmelin larch and Siberian spruce from a great variety of sites characterized by different thermo-hydrological regime of soils are analyzed. The obtained results reveal that current tree radial growth and tree-ring structure in permafrost region in Siberia are largely dependent on local site conditions and may be constrained by low air and soil temperatures as well as soil water availability. Varying climatic responses and seasonal radial growth of trees at different habitats indicate a range of possible scenarios of further development of northern larch stands. Forest fire is another important factor strongly affecting tree stand dynamics and forest ecosystem functioning in the continuous permafrost zone. Analysis of tree-ring parameters indicate that post-fire dynamics of tree-ring structure is in accordance with the changes in habitat conditions caused by removal by fire and then gradual recovery of ground vegetation resulting in an alteration in soil active layer depth. In general, the results of this multi-proxy analysis for trees growing under various conditions in the continuous permafrost zone in Siberia allow assumptions about changes in tree productivity, stand dynamics and therefore carbon uptake under projected climate change and permafrost degradation.

期刊论文 2016-01-01 ISSN: 1314-2704
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页