The foundation soil is often over-consolidated due to the change of soil consolidation history in practical engineering. The effect of over-consolidation ratio (OCR) on the mechanical properties and microstructure of silt has not been sufficiently studied especially on the Yellow River alluvial silt. A series of triaxial undrained shear tests and corresponding SEM tests of the Yellow River alluvial silt were then carried out under different confining pressures and OCRs. The stress and strain curves of the silt show strain-hardening characteristics. The hardening characteristics become more significant, and the peak stress increases significantly as the confining pressure and OCR increase. The silt specimens show phase transformation behavior under a normal consolidation state, which is characterized by stages of initial contraction, temporary phase transformation, and later dilation. The silt tends to be more dilative for over-consolidated specimens and the dilation behavior was more obvious with higher OCRs. The deviatoric stress of the silt can be normalized by the consolidation pressure. The normalized undrained shear strength of the silt generally increased with OCR. The cohesion and internal friction angle of the silt increase with OCR increasing which behaved more like the typical clays as it has more silt content and clay content. The apparent porosity decreases and the average shape coefficient increases with the increase of confining pressure and OCR which shows the silt is denser and the grain shape is closer to circular under higher confining pressure and OCR. The relationship between macroscopic strength characteristics and the microscopic apparent porosity is also discussed. It shows that the macroscopic peak strength gradually decreases with the increase of the microscopic apparent porosity. Such behavior is mainly caused by the internal pore volume reduction and the rise in the contact area between soil particles.
Existing structures can deform and damage due to newly constructed underground structures, which induces surrounding soil deformation due to ground loss and stress relief. Compensation grouting is an active control method widely used in practice due to its advantages of using readily accessible material, a convenient construction process, and the ability to make real-time adjustments compared with passive control methods. However, in current studies, consolidation settlement is commonly considered the primary factor causing the gradual loss of the grouting effect. In this study, a numerical model exhibiting an elastic viscoplastic behavior was established using the finite-difference method to investigate the influence of creep on grout efficiency. The model parameters were first calibrated by comparing them with the measured and computed results of the grouting tests conducted in a consolidometer. Then, the model was used to perform parametric studies, to investigate the influences of initial overconsolidation ratio (OCR) and grout volume. The results show that the grout efficiency, defined as the ratio between total displacement and ideally anticipated heave displacement after grouting, is lower than that when only consolidation is considered. It can decrease up to 2.5 times over 3 years when the OCR is set to 1.00 and the grout volume is 1 mL. This implies that neglecting creep behavior may lead to a nonconservative design for compensation grouting in the long term. The creep control efficiency, defined as the ratio between the settlement induced by creep and that induced by consolidation, has been newly proposed to evaluate the influence of soil creep. It is found that the creep control efficiency of OCR = 1.00 serves as an upper limit under different OCRs because of the significant consolidation settlement in underconsolidated soil and the small creep settlement in overconsolidated soil. Therefore, the creep control efficiency value of OCR = 1.00 can be recommended for conservative design estimates when determining the final grout efficiency.
This study investigates the geotechnical properties of soft Pak Phanang marine clay, prevalent in Nakhon Si Thammarat province, Thailand, where rapid economic development demands a comprehensive understanding for sustainable construction. Triaxial tests on undisturbed marine clay specimens with various stress histories and strain rates were conducted, focusing on over-consolidation ratios (OCRs) of 1, 2, 4, and 8. Shearing was performed at rates of 0.020%, 0.075%, 1.000%, and 8.500% per minute after K0 consolidation. The strain rates selected for this study represent specific values that have been chosen for a comprehensive exploration of Pak Phanang clay behavior under different loading conditions. The effects of stress histories on the marine clay behavior at various strain rates under K0 conditions were investigated. It is indicated that the greater strain rates under K0 conditions potentially lead to the larger undrained shear strengths and reduce pore water pressure for varied over-consolidation ratios. On the other hand, the greater over-consolidation ratios commonly result in lower shear strengths at all strain rates. Examination of pore pressure parameter at failure (Af\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A}_{f}$$\end{document}) and secant Young's modulus reveals significant strain-rate-dependent behavior and OCR influence on the marine clay's response. Undrained shear strength increases with higher OCRs, emphasizing OCR's pivotal role. Rate effect analysis confirms undrained behavior, with a consistent 28% strength increase, regardless of OCR variations. Pore pressure responses exhibit a transition at OCR 4. Secant Young's modulus decreases with rising OCR, establishing a linear correlation with undrained shear strength.
The mechanical behaviour of soils subjected to any stress path in which deviatoric stresses are present is heavily characterised by non-linearity, irreversibility and is strongly dependent on the initial state of stress. The latter, for the majority of geotechnical applications, is normally determined by the at-rest earth pressure coefficient K0, even though this state is valid, strictly speaking, for axisymmetric conditions and for zero-lateral deformations only. Many expressions are available in the literature for the determination of this coefficient for cohesive and granular materials both for normal consolidated and over-consolidated conditions. These relations are available for low to medium stress levels. Results of an extensive experimental investigation on two sands of different mineralogy up to very high stress (120 MPa) are reported in the paper. For reach very high vertical stresses, a special oedometer has been realised. In the loading phase (normal consolidated sands), the coefficient K0n depends on the stress level. It passes from values of about 0.8 to values of about 0.45 in the range of effective vertical stress sigma ' v = 0.5-4 MPa. Subsequently, K0n is about constant and varies between 0.45 to 0.55 up to very high vertical effective stresses (120 MPa). For the sands employed in the tests, Jaki's relation did not lead to reliable results at relatively low pressures, while at high pressures, the same relationship seems to lead to reliable predictions if it refers to the constant volume angle of shear strength. For the over-consolidated sands, K0C strongly depends on the OCR, and for very high values of OCR, K0C could be greater than Rankine's passive coefficient of earth pressure, Kp. This result is due to the very locked structure of the sands caused by the grain crushing, with intergranular contact of sutured and sigmoidal, concavo-convex and inter-penetrating type, that confer to the sand a sort of apparent cohesion and make it similar to weak sandstone.
Natural soil layers often exhibit overconsolidation due to their deposition history, which significantly affects soil mechanical properties. However, traditional analytical methods for determining critical tunnel face pressure are ineffective in considering the overconsolidation effect. This study introduces a nonlinear Hvorslev surface as the strength criterion for overconsolidated soil. The equivalent Mohr-Coulomb strength parameters are derived using the tangent technique and then incorporated into the modified three-dimensional collapse analysis. A new model is established to predict the critical face pressure of tunnel faces in clay layers with varying over consolidation ratios (OCR). The model's validity is confirmed by comparing it with the existing model in its simplified form. The critical tunnel face pressure (sigma(c)) in overconsolidated soil is influenced by the over consolidation ratio (OCR), tunnel diameter (D), the ratio of the swelling line slope to the compression line slope (kappa*/lambda*), pore water pressure coefficient (ru), soil lateral pressure coefficient (K-0), tunnel depth-to-diameter ratio (C/D), and the stress ratio at critical state (M). The findings show that with increasing OCR, the collapse zone at the tunnel face shrinks, leading to a decrease in the critical tunnel face pressure (sigma(c)). When OCR is constant, sigma(c) positively correlates with D, kappa*/lambda*, and r(u), while negatively correlating with K-0, C/D, and M. The impact of kappa*/lambda* on K-c is significant at high OCR values, and C/D and K-0 have a high sensitivity at low OCR values. Therefore, to enhance the design of tunnel face pressure in overconsolidated soil, engineers should consider factors like stress history, OCR, tunnel dimensions, and depth.
Ground settlement resulting from consolidation may lead to tilted buildings, cracks in the pavement, damage to underground utilities, etc. Therefore, it is crucial to understand the consolidation behaviors (including primary consolidation and secondary compression) of the soil of the subgrade. There is a large amount of soft clay deposited in Nanjing, located in the Yangtze River Basin. The consolidation behavior of Nanjing soft clay can significantly affect foundation design and the cost of construction. In this study, experimental measurements of the consolidation behavior of Nanjing soft clay were conducted, and parameters (such as pre-consolidation pressure, secondary consolidation index and secondary consolidation ratio) related to consolidation were assessed. The concept of simulated over-consolidation ratio (OCRs) was proposed, and the close relationship between primary consolidation and secondary compression settlement and the OCRs of Nanjing clay was investigated.
The interface resistance during installation is crucial for the stability and safety of suction caisson in offshore geotechnical engineering, which is strongly affected by the penetration rate and soil-structure interface mechanical properties. This research conducts a series of clay-structure interface shear tests using modified direct simple shear device to fully study the mechanical behavior of clay-suction caisson interface. The effect of shear rate, over consolidation ratios (OCRs), interface boundary conditions, stress levels, and interface roughness were considered. Results show that as the OCR increases, the strength of both the clay and interface increase but show distinct patterns under constant volume (CV) and constant normal load (CNL) boundary condition. It was found that the interface strength is positively related to interface roughness and shear rate impact both the clay and corresponding interface strength. Under CNL conditions, the strength of normally consolidated (NC) clay decreases with rising shear rate, while the over consolidated (OC) clay demonstrate a opposite trend. In contrast, the effect of shear rate on interface behavior gets complicated owing to the combination of roughness, stress levels, and OCRs. Under CV conditions, the shear strength of clay and interface exhibits a logarithmic growth relationship with shear rates. The result of this work can provide a basis for interface resistance evaluation for suction caisson installation in clay.
Based on the modified simple direct shear device which can directly measure the interface pore pressure and interface shear displacement, a series of interface shear tests and corresponding pure clay shear tests were conducted at an undrained state in constant normal load (CNL) boundary conditions or equivalent undrained state in constant volume (CV) boundary conditions. The clay-structure interfaces, consisting of seabed clay and Speswhite kaolin clay with overconsolidation ratios (OCR) of 1 and 3, were tested at three shear rates, respec-tively V1 = 0.0002 mm/s, V2 = 0.001 mm/s, and V3 = 0.01 mm/s. The results demonstrated that the shear strength of the clay-structure interface is lower than that of pure clay, and this difference is more pronounced under CV boundary conditions. In CNL condition, though the pure clay strength decreases with increasing shear rate at OCR = 1 and increases with increasing shear rate at OCR = 3, the shear rate effect on clay-structure interface strength is not obvious. In CV condition, the strength of the interface with the normally consolidated (NC) and over consolidated (OC) clay increases approximately linearly with the shear rate on the semi -logarithmic scale. the shear rate parameter p is used to describe the growth rate of pure clay or clay-structure interface shear strength with a tenfold increase in shear rate. As for normally consolidated clay, in CV condi-tion, the corresponding shear rate parameter satisfies that p (with R1 roughness)> p (pure clay)> p (with R2 roughness). The rate parameter corresponding to NC seabed clay is significantly higher than the rate parameter corresponding to NC Speswhite kaolin clay. For OC clay, the shear rate parameter for interface strength is higher than that for pure clay, meeting with the relationship that p (with R1 roughness)> p (with R2 roughness)> p (pure clay).
Clay, as the most common soil used for foundation fill, is widely used in various infrastructure projects. The physical and mechanical properties of clay are influenced by the pore solution environment. This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations. Moreover, the development of cumulative strain in clay is analyzed, and a fitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration, consolidation stress ratio, and cycle number. In particular, the effects of the NaCl solution concentration and consolidation stress ratio on the pore distribution of the test samples before and after cyclic loading are examined, and the relationship between microscopic pore size and macroscopic cumulative strain is obtained accordingly. Our results show that as the consolidation stress ratio grows, an increasing number of large pores in the soil samples are transformed into small pores. As the NaCl solution concentration becomes higher, the number of small pores gradually decreases, while the number of large pores remains unchanged. Cyclic loading causes the disappearance of the large pores in the samples, and the average pore size before cyclic loading is positively correlated with the axial cumulative strain after cyclic loading. The cumulative strain produced by the soil under cyclic loading is inversely proportional to the NaCl solution concentration and consolidation stress ratio.