Gassy clay, commonly encountered in coastal areas as overconsolidated deposits, demonstrates distinct mechanical properties posing risks for submarine geohazards and engineering stability. Consolidated undrained triaxial tests combined with cyclic simple shear tests were performed on specimens with varying overconsolidation ratios (OCRs) and initial pore pressures, supplemented by SEM microstructural analysis. Triaxial results indicate that OCR controls the transitions between shear contraction and dilatancy, which govern both stress-strain responses and excess pore pressure development. Higher OCR with lower initial pore pressure increases stress path slope, raises undrained shear strength (su), reduces pore pressure generation, and induces negative pore pressure at elevated OCR. These effects originate from compressed gas bubbles and limited bubble flooding under overconsolidation, intensifying dilatancy during shear. Cyclic tests reveal gassy clay's superior cyclic strength, slower pore pressure accumulation, reduced stiffness softening, and enhanced deformation resistance relative to saturated soils. Cyclic pore pressure amplitude increases with OCR, while peak cyclic strength and anti-softening capacity occur at OCR = 2, implying gas bubble interactions.
This study shows the influence of the inclusion of abaca fiber (Musa Textilis) on the coefficients of consolidation, expansion, and compression for normally consolidated clayey silt organic soil specimens using reconstituted samples. For this purpose, abaca fiber was added according to the dry mass of the soil, in lengths (5, 10, and 15 mm) and concentrations (0.5, 1.0, and 1.5%) subjected to a curing process with sodium hydroxide (NaOH). The virgin and fiber-added soil samples were reconstituted as slurry, and one-dimensional consolidation tests were performed in accordance with ASTM D2435. The results showed a reduction in void ratio (compared to the soil without fiber) and an increase in the coefficient of consolidation (Cv) as a function of fiber concentration and length, with values corresponding to 1.5% and 15 mm increasing from 75.16 to 144.51 cm2/s. Although no significant values were obtained for the compression and expansion coefficients, it was assumed that the soil maintained its compressibility. The statistical analysis employed hierarchical linear models to assess the significance of the effects of incorporating fibers of varying lengths and percentages on the coefficients, comparing them with the control samples. Concurrently, mixed linear models were utilized to evaluate the influence of the methods for obtaining the Cv, revealing that Taylor's method yielded more conservative values, whereas the Casagrande method produced higher values.
This study presents a novel approach to determining the soil's elastic modulus (E'), a critical parameter in geotechnical engineering, by employing derivative-based methodologies and one-dimensional consolidation test results. The main challenges of traditional methods, such as triaxial CD testing, include high costs, long duration, and complexity in data collection and analysis. This new approach addresses these challenges by applying derivative calculations at a specific reference stress point (Pref), resulting in a tangent equation that accurately represents the soil's compressive behavior. Utilizing the results from one-dimensional consolidation tests not only reduces dependence on costly triaxial CD tests but also ensures high accuracy in evaluating soil mechanical properties. The findings indicate that the E' value obtained from this new method is equivalent to that from triaxial CD tests, confirming the method's feasibility and effectiveness. The unique achievement of this research is the development of a fast, cost-effective, and efficient method for determining the soil's elastic modulus, opening new research directions in the field of geotechnical engineering.
Peat soil exhibits significant creep deformation, and its consolidation law differs from that of soft soil. This study examines the strain characteristics of peat soils during three stages of consolidation using indoor one-dimensional creep consolidation tests. The results showed that the rebound deformation after the primary consolidation stage and the secondary consolidation stage is equivalent to the deformation seen during the primary consolidation stage, about 1.003 times. However, once the deformation stabilizes, the rebound deformation decreases to 0.32-0.85 times that of the deformation observed during the primary consolidation stage. The elastic and time-independent plastic strains of the peat soil showed two-stage linear changes with ln sigma(z)'. When the load was greater than the pre-consolidation pressure, the deformation modulus increases by approximately 2.10 and 1.56 times, respectively. On this basis, this study, for the first time, defines the creep rate according to the strain rate in the tertiary consolidation stage in the strain versus the time curve (epsilon(z) similar to t). Based on the timeline, a one-dimensional creep consolidation model is established that can accurately predict the strain during the consolidation of the peat soil foundation. The results reveal distinct strain behaviors during each stage and improve the theoretical basis for the study of creep.
Volcanic eruption at La Palma island (Tajogaite, 2021) has produced tons of volcanic ash as natural sediments spread all around the island covering existing crops, roads, embankments, buildings, etc., by that way producing damage to environment. For the rehabilitation and reconstruction of island, and its application to adjacent areas, it is practical and economical to employ these volcanic ashes as construction material being encountered in abundant volume, and by that way could be considered as a resource material instead as a waste material, reducing necessary volume of landfills for its deposition. This paper defines the investigation of chemical, mineralogical and geotechnical properties of these deposited materials for its possible reuse by that way providing solution for its recovery. These young volcanic ashes are studied in its fresh natural state, prior to consolidation and cementation has taken place for its chemical, mineralogical and geotechnical characterization. Volcanic ash of Tajogaite is of a poorly graded sandy nature having difficulties for its compaction, having low improvement of relative density by the application of standard compaction methods. Mineralogy analysis indicates it is rich in silica, iron, calcium and alumina oxide, although being necessary the addition of mineral additives for its alkali-activation. Geotechnical characteristics of different samples vary depending on the sampling site, being resistance parameters determined by direct shear test (friction angle 30 degrees degrees to 34 degrees) degrees ) and deformational properties defined by one-dimensional consolidation test considered low values as of loose sand materials (deformation modulus range from 20 to 40 MPa).
In practical engineering, the magnitude of soil unloading rebound is closely related to the physical and mechanical properties of the soil. Therefore, there are significant differences in geological conditions among the different regions. As such, targeted research on the rebound law and calculation methods of foundation pits is needed. This article reports indoor experiments and numerical simulation methods which are used to study the trends and calculation methods of foundation pit rebound based on typical geological conditions in South China. Our findings are as follows. 1) At maximum consolidation stress ranging from 100 kPa to 400kPa, the maximum rebound rate of plain fill soil in typical soil layers is 0.0539-0.0704, the rebound rate of silty clay is 0.0373-0.0528, the rebound rate of coarse sand is 0.0296-0.0343, the rebound rate of gravelly cohesive soil is 0.0159-0.0305, the rebound rate of fully weathered granite is 0.0175-0.0344, and the rebound rate of strongly weathered granite is 0.0170-0.0379. 2) The rebound indices do not change with changes in the unloading ratio or initial consolidation stress. The rebound indices of the soil layer from top to bottom are 0.0143, 0.0119, 0.0077, 0.0096, 0.0083, and 0.0076, respectively, and a formula for calculating the rebound modulus of typical soil layers in South China was proposed. 3) The pore ratio of the soil after the end of the recompression process is lower than that which occurs after the first compression. The difference between the compression porosity ratio of the soil layer from top to bottom and the compression porosity ratio is 0.1, 0.08, 0.02, 0.06, 0.02, and 0.03, respectively. 4) The calculation of the depth of influence by the self-weight stress offset method is based on the theory of eliminating self-weight stress and unloading stress. The calculation depth is not affected by geological conditions, the formula for calculating the rebound modulus is consistent with the formula obtained from experimental research, and the calculation results are in good agreement with the numerical values.
The expansion of China's highways and railways, as well as the growing demand for them, has focused attention on the impact of traffic loads on foundation settling, uneven deformation, and ground cracking. These effects have garnered considerable research attention, with particular emphasis placed on integrating innovative materials into the soil matrix. This investigation involved loading experiments utilizing a combination of lightweight soil, expanded polystyrene (EPS), and cement. Consolidation tests assessed the extent of deformation and settlement, incorporating varying proportions of EPS and cement. The test results show that when subjected to confined conditions, the stress-strain relationship curve assumes a hyperbolic shape closely linked to the e-p curve. This shape effectively captures the unique structural characteristics exhibited by lightweight soils. As the size of the EPS particles and the applied stress increase, a corresponding rise in the strain of the specimens is observed. Simultaneously, as the strain magnitude increases, the elastic modulus experiences a decline. Additionally, it is noted that this trend further increases as the doping of the cement with EPS particles increases. When the EPS volume ratio and cement mix ratio remain constant across different specimens, there is a decrease in structural strength as the size of the EPS increases. In lightweight soil, settlement can occur rapidly, with approximately 95% of total consolidation deformation happening within a few minutes, which suggests that the settlement is instantaneous and primarily consolidation settlement. The structural strength of lightweight soil shows a negative correlation with the size of EPS, implying that larger EPS size may lead to a reduction in strength. Therefore, it is recommended to consistently use EPS beads with a diameter of 3-4 mm during construction.