There has been a growing interest in controlled low strength material CLSM due to its engineering features, such as self-leveling and early strength development, as well as it potential for utilizing industrial waste. Still, the dynamic properties on CLSM are rarely studied. This study evaluates the feasibility of red mud as a partial aggregate replacement in foamed-lightweight CLSM, incorporating high-carbon fly ash and preformed foam. We varied both the red mud contents RMc and foam volume ratio FVR within the mixtures and examined their impact on unconfined compressive strength and dynamic properties including shear modulus G and damping ratio D. The results reveal that the red mud enhances foam stability, leading to more uniform pore structures and increased porosity, which reduces bulk densities. Despite higher porosity, red mud serves as a strong alkaline activator, enhancing geopolymer reactions of high-carbon fly ash and thereby increasing both compressive strength and initial shear modulus G0. Interestingly, increasing FVR had minimal impact on the D, while higher RMcnotably increased D, highlighting its distinct role in energy dissipation. The red mud-incorporated foamed CLSM exhibits strain-dependent normalized shear modulus G/G0 comparable to that of gravel, while its D is 40-100 % higher than gravel or gravelly soil at shear strain of 1.10-5, which corresponds to typical traffic-induced vibration levels. Moreover, theoretical volumetric-gravimetric relationships are introduced to account for the combined effects of FVR and RMcon CLSM behavior. These findings demonstrate that the red mud included foamed CLSM can be utilized as advanced structural backfill material capable of effectively mitigating the vibrations induced by traffic, low-amplitude seismic events, and mechanical sources.
The application of prefabricated assembly technology in underground structures has increasingly garnered attention due to its potential for urban low-carbon development. However, given the vulnerability of such structures subjected to unexpected seismic events, a resilient prefabricated underground structure is deemed preferable for mitigating seismic responses and facilitating rapid recovery. This study proposes a resilient slip-friction connection-enhanced self-centering column (RSFC-SCC) for prefabricated underground structures to promote the multi-level self-centering benefits against multi-intensity earthquakes. The RSFC-SCC is composed of an SCC with two sub-columns and a series of multi-arranged replaceable RSFCs, intended to substitute the fragile central column. The mechanical model and practical manufacturing approach are elucidated, emphasizing its potential multi-level self-centering benefits and working mechanism. Given the established simulation model of RSFC-SCC-equipped prefabricated underground structures, the seismic response characteristics and mitigation capacity are investigated for a typical underground structure, involving robustness against various earthquakes. A multi-level self-centering capacity-oriented design with suggested parameter selection criteria is proposed for the RSFC-SCC to ensure that prefabricated underground structures achieve the desired vibration mitigation performance. The results show that the SCC with multi-arranged replaceable RSFCs exhibits a significant vibration isolating effect and enhanced self-centering capacity for the entire prefabricated underground structure. Benefiting from the multi-level self-centering process, the RSFC-SCC illustrates a robust capacity that adapts to varying intensities of earthquakes. The multi-level self-centering capacity-oriented design effectively facilitates the target seismic response control for the prefabricated underground structures. The energy dissipation burden and residual deformation of primary structures are mitigated within the target performance framework. Given the replacement ease of RSFCs and SCC, a rapid recovery of the prefabricated underground structure after an earthquake is ensured.
Soil compaction caused by heavy agricultural machinery poses a significant challenge to sustainable farming by degrading soil health, reducing crop productivity, and disrupting environmental dynamics. Field traffic optimization can help abate compaction, yet conventional algorithms have mostly focused on minimizing route length while overlooking soil compaction dynamics in their cost function. This study introduces Soil2Cover, an approach that combines controlled traffic farming principles with the SoilFlex model to minimize soil compaction by optimizing machinery paths. Soil2Cover prioritizes the frequency of machinery passes over specific areas, while integrating soil mechanical properties to quantify compaction impacts. Results from tests on 1000 fields demonstrate that our approach achieves a reduction in route length of up to 4-6% while reducing the soil compaction on headlands by up to 30% in both single-crop and intercropping scenarios. The optimized routes improve crop yields whilst reducing operational costs, lowering fuel consumption and decreasing the overall environmental footprint of agricultural production. The implementation code will be released with the third version of Fields2Cover, an open-source library for the coverage path planning problem in agricultural settings.
Ginger is a significant ethnobotanical and pharmacological crop consisting of potential bioactive constituents responsible for their nutraceutical value, they can have anti-inflammatory, antiobesity, antidiabetic, antinausea, antimicrobial, pain alleviation, antitumor, antioxidant and protective effects on respiratory disease, and agerelated disease. Ginger possesses a substantial value, but its production and general quality are greatly harmed by various biotic and abiotic stressors, to which it is highly susceptible. Fungi are the most damaging disease-causing agents, one of the devastating fungal pathogens in ginger is Fusarium spp., a soil and seed-borne pathogen resulting in poor production, poor quality, and decreased economic returns to the farmers. It infects ginger in every stage of development and each plant part even during post-harvest storage. This review emphasizes a comprehensive understanding of the nutraceutical value of ginger compounds, and Fusarium disease in ginger with its pathogenicity. Moreover, this review elaborates on an improvement of ginger yield by the management of the Fusarium pathogen through the biological and biotechnological approach.
Soil organisms are key to plant growth and ecosystem functions. Earthworms (EWs) enhance soil and indirectly affect plant growth, while their cutaneous excreta (CEx) contain bioactive compounds capable of eliciting plant responses. However, their role in plant immunity is still not well understood. We hypothesized that EWs and their CEx enhance plant defense against foliar pathogens by activating induced resistance. To test this, we evaluated the effect of Eisenia fetida and their CEx on Solanum lycopersicum (tomato), focusing on growth, physiology, and defense response against Botrytis cinerea. Plants were exposed to EWs, CEx, or water (control), followed by B. cinerea infection after two weeks. Gene expression of defense markers was assessed at 24 and 48 h post-inoculation (hpi), while physiological parameters and disease severity were evaluated at 72 hpi. EWs increased shoot biomass compared to CEx, while both treatments reduced root dry weight, suggesting a possible shift in resource allocation. CEx significantly reduced B. cinerea-induced leaf damage and showed a trend for flavonoid accumulation, a known marker of induced resistance. Both treatments, EWs and CEx, activated the jasmonic acid (JA) signaling pathway, with CEx specifically upregulating genes involved in fungal pathogen defense, sustaining their expression over time. The present study offers, for the first time, clear evidence that EW derived CEx can induce resistance by stimulating plant defense responses. Further biochemical, transcriptomic, and metabolomic analyses are needed to confirm indirect results, along with field validation. Nonetheless, the findings underscore the crucial role of soil biodiversity in enhancing crop resilience.
The hilly and mountainous regions of China are characterized by unique features such as small plots of land, steep slopes, fragmented fields, and high soil viscosity, which result in a decline in the efficiency of conventional agricultural machinery, or even render its use impractical. To address this issue, this study developed a micro universal chassis adapted to hilly terrains. First, a four-wheel-drive multifunctional electric micro chassis was designed, considering the terrain characteristics of hilly regions and the agronomic requirements of maizesoybean strip intercropping. Second, the kinematics of the chassis were modeled and analyzed to determine optimal posture control strategies, and a fuzzy RBF neural network-based PID control algorithm was designed to enable dynamic adjustment of the chassis. Then, extensive testing was conducted on the prototype chassis, including straight-line driving tests, steering tests, climbing tests, and passability tests, which demonstrated its excellent operational performance. The straight-line driving tests showed an average lateral deviation of 30 mm and a maximum deviation of 60 mm, while the in-situ steering tests recorded a deviation of 20 mm. Finally, the prototype was applied to field weeding operations, where results indicated that its performance, including travel speed, weeding efficiency, and seedling damage rate, significantly outperformed existing traditional models. The findings suggest that the designed multifunctional micro universal chassis is highly effective for use in hilly and mountainous regions, with superior performance particularly under intercropping systems.
This study presents a novel seismic control system, the Mega-Sub Controlled Structure System (MSCSS), to address vibration control challenges in tall and super-tall buildings under intense seismic excitations. The proposed hybrid VD-TFPB-controlled MSCSS integrates Triple Friction Pendulum Bearings (TFPBs) as base isolators with Viscous Dampers (VDs) between the mega frame and the vibration control substructure, enhancing damping and seismic performance. MSCSS without VD and MSCSS with VD models are established and verified using an existing benchmark. The hybrid VD-TFPB-controlled MSCSS is then developed to evaluate its vibration control response while considering soil-structure interaction (SSI). Numerical analyses with earthquake records demonstrate its superior performance compared to MSCSS without and with VD systems. Nonlinear dynamic analyses reveal that the hybrid system significantly improves vibration control. However, under SSI, increased structural flexibility leads to higher frame stress and more plastic hinges, particularly on soft soil, which amplifies vibrations. Despite these challenges, the hybrid VD-TFPB-controlled MSCSS effectively enhances seismic resilience, offering a robust solution for tall buildings.
Throughout history, plant diseases have posed significant challenges to agricultural progress, driven by both abiotic and biotic factors. Abiotic factors include wind, salt damage, freezing, girdling roots and compacted soil, while biotic factors encompass bacteria, nematodes, fungi and viruses. Plants have evolved diverse defense strategies to counter pathogen attacks, one of which involves chitinases, a subset of pathogenesis-related proteins. Chitinases are hydrolytic enzymes that degrade chitin, a high-molecular-weight linear polymer of N-acetylD-glucosamine, which is a crucial component of fungal cell walls and septa. These enzymes are produced by a wide range of organisms, including plants, animals, insects, fungi and microorganisms. In plants, chitinases are strongly expressed under pathogenic stress, primarily targeting fungal pathogens by breaking down their cell walls. They also contribute to cell wall remodeling and degradation during growth and defense processes. Numerous studies have demonstrated that the antifungal activity of chitinases is influenced by the chitin concentration and surface microstructure of different fungal species. Research has highlighted their role in protecting plants like mango, cucumber, rye, tomato, grapevine and other plants from various fungal diseases. These findings underscore the critical role of chitinases in plant defense mechanisms, showcasing their importance in mitigating fungal infections and supporting plant health.
The American Petroleum Institute (API) filter press test has been used for decades in the construction industry as part of the quality control regime for bentonite-based excavation support fluids. The industry has carried over the use of this test to polymer fluids despite the lack of published evidence of its suitability for these fluids and the very different mechanisms by which polymer fluids and bentonite slurries achieve excavation support. This paper presents the first systematic investigation of this issue through a combination of laboratory testing and theoretical analysis. The investigation demonstrates the very different behaviours of bentonite slurries and polymer fluids. In contrast to the results for bentonite slurries, API filter press results for polymers are shown to be highly sensitive to the filter paper used. In particular, repeatability testing revealed a substantial variation in the polymer fluid loss rates attributable to three primary factors: (a) the filter paper pore size, (b) filter paper damage resulting from the applied test pressure, (c) apparent 'clogging' of the filter paper pore space. Furthermore, the study demonstrates the poor repeatability of the API filter press test for polymer fluids even when filter papers of the same type are used. Interestingly, analysis of polymer flow with respect to filter paper pore size and the applied pressure showed that the filter papers were behaving as porous media rather than a simple bundle of capillaries; their behaviour could not be modelled using a simple capillary bundle model. Importantly, this finding shows that the filter press may provide a rapid method of assessing the apparent viscosity of polymer fluids in porous media at high shear rates; data which cannot be obtained by rotational viscometry, and which would otherwise require resort to permeameter testing of coarse soils. The investigation demonstrates that the filter press test is not useful for the on-site quality control of polymer fluids but, given the theory presented in the paper, it can be a useful laboratory tool that provides valuable insight into polymer fluid flow behaviour in soils of high hydraulic conductivity, the most challenging soils for polymer fluid support.
This work aims to isolate and screen the fungicidal endophytic bacterial strains for biocontrol efficacy against Phytophthora palmivora, a soil-borne pathogenic fungus that kills durian trees worldwide. Among more than 100 isolates, 6 strains were screened as potential fungicidal strains with inhibitory efficiency of 67.4-79.8%. Based on 16S rRNA gene sequencing and phylogenetic analysis, these strains were identified as Bacillus amyloliquefaciens EB.CK9, Bacillus methylotrophicus EB.EH34, Bacillus amyloliquefaciens EB.EH18, Bacillus siamensis EB.KN10, Bacillus velezensis EB.KN15 and Paenibacillus polymyxa EB.KN35. In greenhouse tests, the two strains P. polymyxa EB.KN35 and B. velezensis EB.KN15 significantly reduced the damage to diseased roots by P. palmivora (33.3 and 35.6%, respectively), increased the rate of survival of durian trees (only 20.8 and 22.9% plant death, respectively), and showed a positive effect on promoting durian plant growth. Notably, the potential fungicidal effect of last two strains against P. palmivora was recorded for the first time in this work. HPLC analysis showed that these strains can secret several plant growth-promoting compounds, including gibberellic acid (GA3), indole-3-acetic acid (IAA), kinetin, and zeatin. Of these, GA3 and zeatin were produced with a significant amount by both strains. The volatiles bio-synthesized by these isolates were also identified using GC-MS analysis, and some major volatiles were found as fungicidal agents. This study suggested that P. polymyxa EB.KN35 and B. velezensis EB.KN15 may be potential biocontrol candidates for durian P. palmivora and bio-fertilizers for the sustainable production of durian crops.