共检索到 2

Evapotranspiration (ET) is an important water budget term for understanding the recovery of stormwater retention in green roof systems (GRs). However, ET evaluations, particularly in full-scale GRs, remain challenging. This study investigated ET dynamics within a GR in the City of Pittsburgh, USA, using a water balance based on continuously monitored soil moisture from moisture sensors over 15 months. Results suggest under well-watered soil conditions, daily moisture loss correlated with solar radiation, temperature, and humidity, in decreasing order of correlation strength, while wind speed had limited effects. Compared to sensor-informed moisture loss (using moisture-based water balance), the Hargreaves and FAO-56 Penman-Monteith equations predicted cumulative ET that was 1.8 and 2.1 times higher, respectively. When soil moisture declined and approached the temporary wilting points, a noticeable reduction in daily moisture loss was observed. This suggests the necessity of using a water stress coefficient alongside a crop coefficient to represent actual ET based on FAO-56 Penman-Monteith estimates. Seasonal crop coefficients from dominant native plant species present at our monitored location, eastern bluestar (Amsonia tabernaemontana) and creeping woodsorrel (Oxalis corniculata), had mean values of 0.48, 0.62, and 0.65 for fall, spring, and summer, respectively. The impact of water stress on ET could be characterized by a linear relationship with moisture content. Our results highlight the importance of soil moisture in regulating ET processes and demonstrate the utility of soil moisture data for evaluating ET in GRs and informing irrigation practices.

期刊论文 2024-11-20 DOI: 10.1016/j.scitotenv.2024.175747 ISSN: 0048-9697

The Qinghai-Tibet Plateau (QTP), known as the Earth's third pole, is highly sensitive to climate change. Various environmental degradation has occurred due to the effects of climate warming such as the degradation of permafrost and the thickening of active layers. Evapotranspiration, as a key element of hydrothermal coupling, has become a key factor of the plateau environment for deciphering deterioration, and the FAO P-M model has a good physical foundation and simple model data requirements as a primary tool to study the plateau evapotranspiration. There has been a large research base, but the estimation of evapotranspiration in alpine regions is still subject to many uncertainties. This is reflected in the fact that the classification of underlying surface types has not been sufficiently detailed and the evapotranspiration characteristics of some special underlying surface types are still unclear. Therefore, in this work, we modified the FAO P-M coefficients based on the characteristics of actual evapotranspiration measured by the Eddy covariance system and the key influencing factors to better simulate the actual evapotranspiration in alpine swamp meadow. The results were as follows: (1) Both ETa measured by the Eddy covariance system and ET0 calculated by FAO P-M showed the same trend at the daily and annual scales and hysteresis was confirmed to exist, so the error caused by hysteresis should be considered in further research. (2) The annual ETa was 566.97 mm and annual ETa/P was 0.76, and about 11.19% of ETa occurred during the night. The ETa was 2.15 during the non-growing seasons, implying that a large amount of soil water was released into the air by evapotranspiration. (3) The evapotranspiration characteristics of alpine swamp meadow are formed under the following conditions: control of net radiation (R-n) affected by VPD during the growing season and affected by soil temperature and humidity during the non-growing season. Precipitation and soil water content are no longer the main controlling factors of evapotranspiration during the growing season at the alpine swamp meadow as the volume soil water content tends to saturate. (4) The basic corrected K-c was 1.14 during the initial and mid-growing season, 1.05 during the subsequent growing season, and 0-0.25 during the non-growing season, and the correction factor process can also provide ideas for correcting the K-c of other vegetation.

期刊论文 2023-10-15 DOI: http://dx.doi.org/10.3390/w14213578
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页