共检索到 4

Permafrost landscapes are particularly susceptible to the observed climate change due to the presence of ice in the ground. This paper presents the results of the mapping and assessment of landscapes and their vulnerability to potential human impact and further climate change in the remote region of Eastern Chukotka. The combination of field studies and remote sensing data analysis allowed us to identify the distribution of landscapes within the study polygon, reveal the factors determining their stability, and classify them by vulnerability to the external impacts using a hazard index, H. In total, 33 landscapes characterized by unique combinations of vegetation cover, soil type, relief, and ground composition were detected within the 172 km(2) study polygon. The most stable landscapes of the study polygon occupy 31.7% of the polygon area; they are the slopes and tops of mountains covered with stony-lichen tundra, alpine meadows, and the leveled summit areas of the fourth glacial-marine terrace. The most unstable areas cover 19.2% of the study area and are represented by depressions, drainage hollows, waterlogged areas, and places of caterpillar vehicle passage within the terraces and water-glacial plain. The methods of assessment and mapping of the landscape vulnerability presented in this study are quite flexible and can be adapted to other permafrost regions.

期刊论文 2021-05-01 DOI: 10.3390/land10050445

Increased mineralization of the organic matter (OM) stored in permafrost is expected to constitute the largest additional global warming potential from terrestrial ecosystems exposed to a warmer climate. Chemical composition of permafrost OM is thought to be a key factor controlling the sensitivity of decomposition to warming. Our objective was to characterise OM from permafrost soils of the European Arctic: two mineral soils-Adventdalen, Svalbard, Norway and Vorkuta, northwest Russia-and a palsa (ice-cored peat mound patterning in heterogeneous permafrost landscapes) soil in Neiden, northern Norway, in terms of molecular composition and state of decomposition. At all sites, the OM stored in the permafrost was at an advanced stage of decomposition, although somewhat less so in the palsa peat. By comparing permafrost and active layers, we found no consistent effect of depth or permafrost on soil organic matter (SOM) chemistry across sites. The permafrost-affected palsa peat displayed better preservation of plant material in the deeper layer, as indicated by increasing contribution of lignin carbon to total carbon with depth, associated to decreasing acid (Ac) to aldehyde (Al) ratio of the syringyl (S) and vanillyl (V) units, and increasing S/V and contribution of plant-derived sugars. By contrast, in Adventdalen, the Ac/Al ratio of lignin and the Alkyl C to O-alkyl C ratio in the NMR spectra increased with depth, which suggests less oxidized SOM in the active layer compared to the permafrost layer. In Vorkuta, SOM characteristics in the permafrost profile did not change substantially with depth, probably due to mixing of soil layers by cryoturbation. The composition and state of decomposition of SOM appeared to be site-specific, in particular bound to the prevailing organic or mineral nature of soil when attempting to predict the SOM proneness to degradation. The occurrence of processes such as palsa formation in organic soils and cryoturbation should be considered when up-scaling and predicting the responses of OM to climate change in arctic soils.

期刊论文 2017-09-01 DOI: 10.1007/s10533-017-0373-2 ISSN: 0168-2563

An adapted version of the Stefan equation (CLIFFSE) was tested to predict lateral progression of the frost front into cohesive sediments that form coastal cliffs along the north shore of the maritime estuary and gulf of the St Lawrence River (Quebec, Canada). The equation was adapted to accommodate the influence of cliff erosion on lateral penetration of freezing and thawing into vertical cliff faces. As the cliff erodes, freezing and thawing are initiated from the newly revealed surface. Frost progression and erosion were measured with an automated thermal erosion pin system. Measured observations agreed with predictions from the adapted equation (78 to 99% of the variability explained). Erosion associated with thawing front progression during winter warm spells led to a relative reduction in the frost front depth. Subsequently, progression of the frost front into the cliff contributed to an additional 50 cm of sediment freezing and erosion by the end of the cold season, which was not predicted by the original Stefan equation. Our findings support the hypothesis that multiple warm spells influence the amount of lateral penetration of the frost front in vertical cliffs. Copyright (c) 2015 John Wiley & Sons, Ltd.

期刊论文 2017-01-01 DOI: 10.1002/ppp.1883 ISSN: 1045-6740

A quantification of coastal erosion processes on a clay cliff in a cold temperate region was conducted. This study was based on a network of markers that were measured on a monthly basis from 1998 to 2003. During that period, the average retreat rate of the cliff was 1.5 m/y. Our results demonstrate that weathering is a more significant cliff retreat factor than hydrodynamic processes on fine sediment shorelines. This statement opposes conventional understanding. In fact, 65% of the annual cliff retreat took place through the winter season when the waves could not reach the foot of the cliff because of an ice foot. This erosion is caused by cryogenic processes in winter, particularly through freeze-thaw cycles, whereas desiccation and wave undercutting contributed respectively for 20% and 15% of the total annual retreat. The field measurements conducted before and after major storms, especially on October 29, 2000, illustrated that wave undercutting was negligible for the clay cliff. These results do not corroborate with previous studies showing that cliff erosion is mostly controlled by wave undercutting with negligible winter erosion. In a context of global warming, the intensity of cryogenic processes can become more important due to milder winters, an increase in the number of freeze-thaw cycles, and the reduction of the ice foot and snow cover (especially on south-facing cliffs directly exposed to solar radiation). This study demonstrates that the evaluation of sensitivity of coastal systems to climatic change should not be done just for sea-level rise and increased storminess, but also for other climatic parameters. Future research should also take into account approaches combining the studies of marine and terrestrial erosion processes.

期刊论文 2008-01-01 DOI: 10.2112/04-0419.1 ISSN: 0749-0208
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页