共检索到 522

The frequent occurrence of earthquakes worldwide has rendered highway slope protection projects highly vulnerable to damage from seismic events and their secondary disasters. This severely hampers the smooth implementation of post-disaster rescue and recovery efforts. To address this challenge, this study proposes a comprehensive method for assessing seismic losses in slope protection projects, incorporating factors such as topography and elevation to enhance its universality. The method categorizes seismic losses into two main components: damage to protection structures and costs associated with landslide and rockfall clearance and transportation. This study estimates the cost range for common protection structures and clearance methods under general conditions based on widely recognized quota data in China. It establishes criteria for classifying the damage states of protection structures and provides loss ratio values based on real-world seismic examples and expert experience, constructing a model for assessing damage losses. Additionally, by summarizing the geometric characteristics of soil and rock accumulations on road surfaces, a method for estimating landslide volumes is proposed, considering the dynamic impact of slope gradients on clearance and transportation volumes, and a corresponding cost assessment model for clearance and transportation is developed. The feasibility and reliability of the proposed method are verified through two case studies. The results demonstrate that the method is easy to implement and provides a scientific basis for improving relevant standards and practices. It also offers an efficient and scientific tool for loss assessment to industry practitioners.

期刊论文 2025-10-01 DOI: 10.1016/j.soildyn.2025.109524 ISSN: 0267-7261

Seasonal freezing and thawing significantly influence the migration and distribution of soil hydrothermal salts. Understanding the dynamics of hydrothermal salt forces in canal foundation soils is crucial for effective canal disease control and optimization. However, the impact on rectangular canals remains poorly understood. Therefore, field-scale studies on water-heat-salt-force-displacement monitoring were conducted for the canal. The study analyzed the changes and interaction mechanisms of water-heat-salt-force in the soil beneath the canal, along with the damage mechanisms and preventive measures. The results indicate that the most rapid changes in temperature, moisture, and salt occur in the subsoil on the canal side, with the greatest depth of freezing. Heat transfer efficiency provides an intuitive explanation for the sensitivity of ground temperature at the junction of the canal wall and subsoil to air temperature fluctuations, as well as the minimal moisture migration in this region under the subcooling effect. The temperature-moisture curve suggests that current waterheat-force and water-heat-salt-force models exhibit a delay in accurately predicting water migration within the subsoil. Rectangular canals are more susceptible to damage under peak freezing conditions, requiring a combined approach of freezing restraint and frost-heaving force to mitigate damage. These findings offer valuable insights for canal design, maintenance, and further research.

期刊论文 2025-10-01 DOI: 10.1016/j.jhydrol.2025.133251 ISSN: 0022-1694

Zn2+ play an important role in maintaining the normal functioning of living organisms, and excessive or insufficient levels can cause serious health problems. Zn2+ play a vital role in maintaining normal biological functions, and abnormal levels Zn2+ may lead to a range of severe health issues. Therefore, real-time and accurate detection of Zn2+ is critically important. Given the widespread presence of Zn2+ in living organisms and external environments, developing probes suitable for multi-scenario Zn2+ detection is of significant practical value. In this study, a novel probe SSD was synthesized using salicylaldehyde as the precursor, enabling ultra-sensitive Zn2+ detection with a detection limit as low as 9.1 nM. The probe SSD was successfully applied to the detection of Zn2+ in water, soil, and food samples. In addition, an SSD-based Zn2+ smartphone detection platform was developed, which can quickly detect the content of Zn2+ in actual samples. Moreover, due to its excellent optical properties and low toxicity, SSD was able to detect both intracellular and extracellular Zn2+. Most importantly, probe SSD demonstrated the capability to monitor real-time changes in Zn2+ concentrations during cellular oxidative damage, providing valuable insights for research on related physiological diseases.

期刊论文 2025-09-05 DOI: 10.1016/j.molstruc.2025.142461 ISSN: 0022-2860

This paper establishes a novel full-process numerical simulation framework for analyzing the 3D seismic response of mountain tunnels induced by active faults. The framework employs a two-step approach to achieve wavefield transmission through equivalent seismic load: first, a highly efficient and accurate FMIBEM (Fast multipole indirect boundary element method) is used for large-scale 3D numerical simulations at the regional scale to generate broadband ground motions (1-5 Hz) for specific sites; subsequently, using the FEM (Finite element method), a refined simulation of the plastic deformation of surrounding rock and the elastoplastic behavior of the tunnel structure was conducted at the engineering scale. The accuracy of the framework has been validated. To further demonstrate its effectiveness, the framework is applied to analyze the impact of different fault movement mechanisms on the damage to mountain tunnels based on a scenario earthquake (Mw 6.7). By introducing tunnel structure damage classification and corresponding damage indicators, the structural damage levels of tunnels subjected to active fault movements are quantitatively evaluated. The findings demonstrate that the framework successfully simulates the entire process, from fault rupture and terrain amplification to the seismic response of tunnel structures. Furthermore, the severity of tunnel damage caused by different fault types is ranked as follows: reverse fault > normal fault > strike-slip fault.

期刊论文 2025-09-01 DOI: 10.1016/j.enganabound.2025.106306 ISSN: 0955-7997

A series of large-scale shaking table tests were conducted to investigate the dynamic response and damage characteristics of the variable- single pile foundation in liquefiable soil-rock interaction strata under seismic loading. The test results show that the seismic responses of the excess pore pressure ratio under seismic excitations are divided into four stages, among which the difference in the sustained liquefaction stage is the most significant. Pile acceleration amplification is governed by dual coupling effects of soil-pile interaction and structural stiffness. The pile body bending moment distribution features dual-peak characteristics, the largest peak arises at the soil layers interface, while the other peak occurs at the variable-section. Increased seismic excitation accelerates the liquefaction of the saturated sand layer, yet simultaneously slows down the dissipation of the excess pore pressure. As the seismic excitation increases, the acceleration response and displacement response of the pile top are most significant, though maximum bending moment positions remain stable. The stress overrun damage occurs gradually in the variable- zone under strong earthquakes. Based on the analysis results and the Fourier spectrum modal characteristics of the pile top, the damage mechanism of the pile body is revealed and verified. This study will provide an essential reference for further understanding the seismic response and damage of the variable- single pile foundation in liquefiable soil-rock interaction strata.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109466 ISSN: 0267-7261

With changing climate and increased frequency of wet weather extremes, increased attention is being directed towards understanding the resilience of agroecosystems and the goods and services they deliver. The world's most instrumented and monitored farm (the North Wyke Fam Platform - a UK National Bioscience Research Infrastructure) has been used to explore the resilience of sediment loss regulation delivered by lowland grazing livestock and arable systems under conventional best management. The robustness of water quality regulation was explored using exceedance of modern background (i.e. pre-World War II) net soil loss rates (i.e., sediment delivery) during both typical (2012-13, 2015-16) and the most extreme (2013-14, 2019-20, 2023-24) winters (December - February, inclusive), in terms of seasonal rainfall totals, over the past similar to decade. Exceedances of maximum modern background sediment loss rates from pasture were as high as 2.4X when scheduled ploughing and reseeding for sward improvement occurred immediately prior to the winters in question. Exceedances of maximum modern background sediment loss rates in the arable system (winter wheat and spring oats) were as high as 21.7X. Over the five monitored winters, the environmental damage costs for cumulative sediment loss from the permanent pasture system ranged from pound 163-203 and pound 197-245 ha(-1) to pound 321-421 and pound 386-507 ha(-1). Over the same five winters, environmental damage costs for cumulative sediment loss from catchments subjected to reseeding and, more latterly, arable conversion, ranged between pound 382-584 and pound 461-703 ha(-1) to pound 1978-2334 and pound 2384-2812 ha(-1). Our data provide valuable quantitative insight into the impacts of winter rainfall and land use on the resilience of sediment loss regulation.

期刊论文 2025-09-01 DOI: 10.1016/j.agee.2025.109713 ISSN: 0167-8809

This study aims to assess the effectiveness of inter-storey isolation structures in reducing seismic responses in super high-rise buildings, with a focus on analyzing the impact of soil-structure interaction (SSI) on the dynamic performance of the buildings. Utilizing the lumped parameter SR (Sway-Rocking) model, which separately simulates the overall displacement of the super high-rise structure and the rotational motion of the foundation, the dynamic characteristic parameters of the simplified model are derived. The natural frequencies of the system are calculated by solving the equations of motion. The study examines the influence of parameters such as soil shear wave velocity and structural damping ratio on the dynamic response of the structure, with particular emphasis on displacement transfer rates. The findings indicate that inter-storey isolation structures are highly effective in reducing displacement responses in super high-rise buildings, especially when considering SSI effects. Specifically, for high-damping inter-storey isolation structures, modal frequencies decrease as soil shear wave velocity decreases. In non-isolated structures, the damping ratio increases with decreasing soil shear wave velocity, whereas for isolated structures, the damping ratio decreases, with a more pronounced reduction at higher damping ratios. Increasing damping significantly reduces inter-storey displacement and damage indices. However, under low shear wave velocity conditions, inter-storey isolation structures may experience increased displacement and damage.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109445 ISSN: 0267-7261

The foundation conditions of piers for multi-span long-distance heavy-haul railway bridges inevitably vary at different locations, which may lead to non-uniform ground motions at each pier position, potentially causing adverse effects on the bridge's seismic response. To investigate the seismic response of bridges and the running safety of heavy-haul trains as they cross the bridge during an earthquake, a three-dimensional heavy-haul railway train-track-bridge (HRTTB) coupled system model was developed using ANSYS/LS-DYNA. This model incorporates the nonlinear behavior of critical components such as bearings, lateral restrainers, piers, and wheel-rail contact interactions, and it has been validated against field-measured data to ensure reliable dynamics parameters for seismic analysis. A multi-span simply supported girder bridge from a heavy-haul railway (HHR) was employed as a case study, in which a spatially correlated non-stationary ground motion field was generated based on spectral representation harmonic theory. Comparative analyses of the seismic responses under spatially varying ground motions (SVGM) and uniform seismic excitation conditions were performed for the coupled system. The results indicate that the presence of heavy-haul trains prolongs the natural period of the HRTTB system, thereby appreciably altering its seismic response. At lower apparent wave velocities, more piers exhibit a low-response state, and some pier bases enter the elastic-plastic stage under local site effects. Compared with the piers, the bearings show higher sensitivity to seismic inputs; fixed bearings experience damage when subjected to traveling wave effects and local site effects, which is subsequently followed by the failure of lateral restrainers. Train running safety is markedly reduced when crossing local soft soil site conditions. The conclusions drawn from this study can be applied in the seismic design and running safety assessment of HHR bridge systems under SVGM.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109450 ISSN: 0267-7261

Buried water pipelines, as crucial urban infrastructure, play an essential role. However, the damage to the pipeline structure has emerged as a severe public safety hazard. Monitoring the state of the pipeline structure holds great significance for the normal operation of water pipelines. In this paper, a damage monitoring method for buried pipelines based on distributed acoustic sensing technology is proposed. Through a series of field experiments conducted on a pipeline, the feasibility of utilizing the attached fiber-optic cable to acquire vibration information has been demonstrated. The recorded vibration signals can indicate various damage statuses during the pipeline damage process, including rock/soil fall, pipeline seepage, and pipe wall failure. The results suggest that the fiber-optic cable accompanying the pipelines can be exploited as sensing resources to monitor damage risks to the pipelines, which presents advantages in the damage identification and location of buried pipelines. This research provides a valuable reference for the application of distributed acoustic sensing technology in the damage monitoring of urban buried water pipelines.

期刊论文 2025-09-01 DOI: 10.1016/j.yofte.2025.104230 ISSN: 1068-5200

Based on the deficiencies of the generalized response displacement method and the integral response displacement method for longitudinal seismic analysis of the shield tunnel, the dynamic sub-str1cture analysis method for longitudinal seismic response of a large-diameter shield tunnel crossing the complex soil layer is proposed. The feasibility and superiority of the dynamic sub-structure analysis method are explored by comparing it with the calculation results of the three-dimensional (3D) soil-underground structure interaction model. Then, a finite element refined 3D model of the 2.7 km Suai submarine shield tunnel is established by using the proposed method, and the longitudinal seismic response of the large-diameter shield tunnel crossing complex soil layers is simulated and analyzed. The research results indicate that the proposed dynamic sub-structure method has clear concepts, accurate calculation results and high efficiency to simulate the dynamic soil-tunnel interaction, which can avoid the error effect of the equivalent soil spring used in the generalized response displacement method. At the same time, this method can consider the seismic effect of the complex soil layers which has been avoided by the generalized response displacement method and the integral response displacement method. Also, the calculation results by the proposed method can comprehensively present the typical earthquake damages of shield tunnels crossing the wide river valley or the strait. It proves that it is not appropriate to simplify the longitudinally of the shield tunnel into a straight line, as doing so would neglect the influence of the longitudinal slope of complex river valleys or the straits. Also, the longitudinal seismic response of the shield tunnel is more sensitive to low-frequency seismic waves and the bolts are more susceptible to seismic damage compared to the segment opening.

期刊论文 2025-09-01 DOI: 10.1016/j.tust.2025.106680 ISSN: 0886-7798
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共522条,53页