Seismic intensity measures (IMs) can directly affect the seismic risk assessment and the response characteristics of underground structures, especially when considering the key variable of burial depth. This means that the optimal seismic IMs must be selected to match the underground structure under different buried depth conditions. In the field of seismic engineering design, peak ground acceleration (PGA) is widely recognized as the optimal IM, especially in the seismic design code for aboveground structures. However, for the seismic evaluation of underground structures, the applicability and effectiveness still face certain doubts and discussions. In addition, the adverse effects of earthquakes on tunnels in soft soil are particularly prominent. This study aims to determine the optimal IMs applicable to different burial depths for horseshoe-shaped tunnels in soft soil using a nonlinear dynamic time history analysis method, and based on this, establish the seismic fragility curves that can accurately predict the probability of tunnel damage. The nonlinear finite element analysis model for the soil-tunnel interaction system was established. The effects of different burial depths on damage to horseshoe-shaped tunnels in soft soil were systematically studied. By adopting the incremental dynamic analysis (IDA) method and assessing the correlation, efficiency, practicality, and proficiency of the potential IMs, the optimal IMs were determined. The analysis indicates that PGA emerges as the optimal IM for shallow tunnels, whereas peak ground velocity (PGV) stands as the optimal IM for medium-depth tunnels. Furthermore, for deep tunnels, velocity spectral intensity (VSI) emerges as the optimal IM. Finally, the seismic fragility curves for horseshoe-shaped tunnels in soft soil were built. The proposed fragility curves can provide a quantitative tool for evaluating seismic disaster risk, and are of great significance for improving the overall seismic resistance and disaster resilience of society.
Research on the characterization of ground motion intensity and damage of underground structures is limited, while reasonable selection of ground motion intensity measures and structural damage measures is a crucial prerequisite for structural seismic performance evaluation. In this study, a two-dimensional finite element model of soil and structures was established based on the Daikai subway station in Japan. Through incremental dynamic analysis, 32 ground motion intensity measures and seven structural damage measures were comprehensively evaluated from seven properties, including efficiency, practicality, proficiency, scaling robustness, relativity, hazard computability, and sufficiency. According to the analysis results, the purpose and significance of each property during measure optimization were hierarchically sorted out. The results show that peak ground acceleration, acceleration spectrum intensity, and sustained maximum acceleration are recommended as ground motion intensity measures, while maximum inter-story drift ratio, column end displacement angle, and two-parameter measures are recommended as the structural damage measures for seismic performance evaluation of the shallow-buried subway station. Furthermore, measure optimization approaches are proposed as follows: the basic selection of IMs should satisfy scaling robustness, hazard computability, and sufficiency to site condition; the optimal selection of IMs is suggested to be evaluated mainly through efficiency, practicality and proficiency, and verified through relativity and relative sufficiency between IMs. The optimal selection of DM is suggested to be evaluated through four properties, including efficiency, practicality, proficiency, and relativity.