A heavy armed conflict erupted in Tigray region of Ethiopia in 2020, and the crisis continued up to 2022. This study investigates the impacts of this crisis on the status of natural resources, and Soil and Water Conservation (SWC) efforts. We collected primary data through field observations, measurements, interviews and group discussions during the wartime. We also reviewed published articles and official archives to complement the primary data, which were often challenging to obtain due to the war. We found that vegetated landscapes were damaged by artillery fire and bombings. The average depth of the surveyed bomb craters along the asphalts was 1.15 +/- 0.47 m (n 1/4 16), whereas the average surface diameter of the craters and their rim was 2.66 +/- 0.67 m. In addition, the construction of numerous military trenches along croplands and hillsides exposed the soil particles into erosion and water pollution. The conflict also halted SWC efforts on various land uses, which were carried out annually during peacetime. For instance, 20,591 km/year of stone bunds were not constructed per year due to the crisis. Moreover, terraces and stone bunds were demolished to construct temporary ground fortifications. Indirectly, the critical energy crisis further increased pressure on forests. In this context, the poor farmers shift their livelihood strategies from the long-term sustainability to immediate economic recovery during the critical time. To conclude, the pathways of the warfare undermined the status of natural resources, and the ongoing decades of re-greening programs. Therefore, our ground-based findings can be used to prioritize and rehabilitate the war-damaged landscape services. (c) 2024 International Research and Training Center on Erosion and Sedimentation, China Water and Power Press, and China Institute of Water Resources and Hydropower Research. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY- NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Currently, there is a growing concern for human health with the rise of environmental pollution. Water contamination and health problems had been understood. Sanitation-related health issues have been overcome in the greater part of the world. Progressive industrialization has caused a number of new pollutants in water and in the atmosphere. It is a growing concern for the human health, especially upon the reproductive health. Current researchers provide a strong association between the rising concentrations of ambient pollutants and the adverse health impact. Furthermore, the pollutants have the adverse effects upon reproductive health as well. Major concern is for the health of a pregnant woman and her baby. Maternal-fetal inflammatory response due to the pollutants affects the pregnancy outcome adversely. Preterm labor, fetal growth restriction, intrauterine fetal death, and stillbirths have been observed. Varieties of pathological processes including inflammation, endocrine dysfunction, epigenetic changes, oxidative and nitrosative stress, and placental dysfunction have been explained as the biological plausibility. Prospective studies (systematic review and meta-analysis) have established that exposure to particulate matters (PM) and the nanoparticles (NP) leads to excessive oxidative changes to cause DNA mutations, lipid peroxidation and protein oxidation. Progressive industrialization and emergence of heavy metals, micro- (MP) and nanoparticles (NP) in the atmosphere and in water are the cause for concern. However, most of the information is based on studies from industrialized countries. India needs its own country-based study to have the exact idea and to develop the mechanistic pathways for the control.
Scientific innovation is overturning conventional paradigms of forest, water, and energy cycle interactions. This has implications for our understanding of the principal causal pathways by which tree, forest, and vegetation cover (TFVC) influence local and global warming/cooling. Many identify surface albedo and carbon sequestration as the principal causal pathways by which TFVC affects global warming/cooling. Moving toward the outer latitudes, in particular, where snow cover is more important, surface albedo effects are perceived to overpower carbon sequestration. By raising surface albedo, deforestation is thus predicted to lead to surface cooling, while increasing forest cover is assumed to result in warming. Observational data, however, generally support the opposite conclusion, suggesting surface albedo is poorly understood. Most accept that surface temperatures are influenced by the interplay of surface albedo, incoming shortwave (SW) radiation, and the partitioning of the remaining, post-albedo, SW radiation into latent and sensible heat. However, the extent to which the avoidance of sensible heat formation is first and foremost mediated by the presence (absence) of water and TFVC is not well understood. TFVC both mediates the availability of water on the land surface and drives the potential for latent heat production (evapotranspiration, ET). While latent heat is more directly linked to local than global cooling/warming, it is driven by photosynthesis and carbon sequestration and powers additional cloud formation and top-of-cloud reflectivity, both of which drive global cooling. TFVC loss reduces water storage, precipitation recycling, and downwind rainfall potential, thus driving the reduction of both ET (latent heat) and cloud formation. By reducing latent heat, cloud formation, and precipitation, deforestation thus powers warming (sensible heat formation), which further diminishes TFVC growth (carbon sequestration). Large-scale tree and forest restoration could, therefore, contribute significantly to both global and surface temperature cooling through the principal causal pathways of carbon sequestration and cloud formation. We assess the cooling power of forest cover at both the local and global scales. Our differentiated approach based on the use of multiple diagnostic metrics suggests that surface albedo effects are typically overemphasized at the expense of top-of-cloud reflectivity. Our analysis suggests that carbon sequestration and top-of-cloud reflectivity are the principal drivers of the global cooling power of forests, while evapotranspiration moves energy from the surface into the atmosphere, thereby keeping sensible heat from forming on the land surface. While deforestation brings surface warming, wetland restoration and reforestation bring significant cooling, both at the local and the global scale.image
Gold mining has been increasing in Brazil and worldwide since 2000, causing negative effects on the environment and surrounding communities due to deforestation of open mines and the degradation of soil and rivers. This activity is historically important in the northern Brazilian state of Mato Grosso, Southern Amazon, but integrated studies are lacking. The current research sought to map areas of active alluvial gold mining in this region from 2009 to 2019, relating it to fluctuations in the national gold market as a tool for inspection, prevention and mitigation of related environmental damage. The study was carried out by remote sensing with LANDSAT and IRS satellite images in six stages, ranging from the survey of gold mines found in loco to the analysis of the relationship between the evolution of exploited areas and the price of gold. Eight mining zones were identified. The exploited areas were dimensioned by year and mining zone, indicating an overall 195% growth. This growth was not homogeneous among the mining zones. The true price per gram of gold increased by 56.62% during the study period. Mining fronts have approached and/or encroached on conservation units and indigenous lands. The relationship between price variation and the area exploited was significant and positive in the eight zones (alpha=0.05). This was the first detailed mapping of gold mines at the regional level in eleven years to support effective public policies in overcoming persistent socio-environmental conflicts related to the activity.
The presence of forest vegetation can aid in preserving the permafrost layer by maintaining lower soil temperatures via the accretion of an organic layer at the surface. This layer has a low bulk density and low thermal conductivity (due also to high evapotranspiration rates by forest vegetation), which insulates ice-rich permafrost. Forest removal can lead to significant increases in the summer soil temperature, which increases the thickness of the active layer (i.e., the surficial layer above permafrost which thaws during summer and freezes again in winter) and causes a rise in the active layer towards the surface. When vegetation is sensitive to saturated soil conditions, a rise in the active layer can lead to the conversion of forested areas to wetlands. In this manuscript, we develop a modeling framework to relate vegetation permafrost feedbacks to the emergence of multiple stable ecosystem states. Factors related to soil temperature and hydrologic characteristics of the system were examined to see how they affect the location of the stable and unstable states. This model was also used to examine how an increase in precipitation would affect the temporal dynamics of the active layer and vegetation. Results show that the presence of forest vegetation can enhance the resilience of the system in that it is less prone to state shifts following a disturbance. Understanding these dynamics is important given, (i) the rapid rate at which these systems can shift between states, (ii) the projected climatic changes for forested areas underlain by permafrost and (iii) the high rates of forest loss in these areas. (C) 2012 Elsevier Ltd. All rights reserved.