This study investigates efficient dehydration and solidification techniques for waste mud generated from loess pile foundations during highway construction in Lanzhou, Northwest China. The waste mud, characterized by high viscosity (85% moisture content) and alkalinity (pH 11.2), poses environmental risks if untreated. Dehydration experiments identified an optimal composite flocculant mixture of 3.5 g polyaluminum chloride (PAC) and 22 mL anionic polyacrylamide (APAM) per 500 mL waste mud, accelerating sedimentation and reducing the supernatant pH to 8.65, compliant with discharge standards. Solidification tests employed a composite curing agent (CG-T1+cement), demonstrating enhanced mechanical properties. The California Bearing Ratio (CBR) of the solidified sediment reached 286%, and the unconfined compressive strength (UCS, 7-day) exceeded 2.0 MPa, meeting roadbed specifications. The combined use of PAC-APAM for dehydration and CG-T1-cement for solidification offers an eco-friendly and economically viable solution for reusing treated waste mud in construction applications, addressing regional challenges in mud disposal and resource recovery.