Freeze-thaw desertification (FTD) as a specific land degeneration form in high elevations is intensifying in alpine meadows due to climate change and human activities. It causes the formation of desertified patches (DPs), and further aggravating alpine meadow patchiness and impairing ecosystem functions such as water conservation, carbon sequestration and biodiversity maintenance. However, the impacts of FTD on the patch pattern, soil properties, and vegetation succession of alpine meadows and the elevation differences of these impacts still lack a comprehensive understanding. Here, we analyzed the patch patterns, soil and vegetation characteristics in typical FTD regions in the Qilian Mountains using aerial photography and field investigations along an elevation gradient. Our results indicated that, as elevation increases, the fragmentation of alpine meadows caused by FTD intensified, which was related to the elevational differentiation of freeze-thaw cycles and soil water holding capacity. DPs not only led to a decrease in soil water holding capacity and an increase in bulk density, but also caused surface soil sandification. Among them, the weakening of soil water holding capacity by DPs was particularly serious in high elevations. Additionally, the degradation of the original vegetation species com-munities in DPs caused the significant loss of vegetation cover, biomass and soil organic carbon, and made DPs exhibit certain alpine desert steppe characteristics, whereas the vegetation diversity of DPs had an increase at low elevations. Our findings highlight the significant impacts of FTD on the water conservation function and vegetation diversity of alpine meadows, and it is necessary to apply ecological protection measures to control DPs expansion such as fenced grazing, biological control and land cover (crop, vegetation, degradable plastic mulch, etc.).
Soil hydrological properties not only directly influenced soil water content, evapotranspiration, infiltration, and runoff, but also made these factors of concern in arid and semi-arid regions. Prior research has focused on the temporal and spatial variation in soil hydrological properties and the impacts of climate change, ecosystem changes over time or human activities on soil hydrological properties. However, studies conducted on the differences in soil hydrological properties between shady and sunny slopes have seldom been conducted, especially in the permafrost region of the Qinghai-Tibetan Plateau. To investigate the variation in soil hydrological properties on shady and sunny slopes, we chose the Zuomaokongqu watershed of Fenghuo Mountain, which is located on the Qinghai-Tibetan Plateau, as the study area. Three experimental sites were selected in the study area, and the distance between experimental sites was 100m. Based on the differences in altitude and vegetation coverage, five sunny slope sample points and three shady slope sample points were selected in each experimental site. At each of these sample points, the soil water content, soil-saturated conductivity, soil water-retention curve, soil physico-chemical properties, aboveground biomass, and underground biomass were examined in the top 0-50cm of the active layer. The results showed that the soil hydrological properties of shady slopes differed significantly from those of sunny slopes. The soil water content of sunny slopes was 20.9% less than that of shady slopes. The soil-saturated water content of sunny slopes was 12.2% less than that of shady slopes. The soil water content of sunny slopes at -0.3Mpa and -0.7Mpa matric potential was 23.5% and 21.4% less than that of shady slopes, respectively. It was indicated that the soil water-retention capacity of sunny slopes was lower than that of shady slopes. However, the soil-saturated conductivity of sunny slopes was 84.5% larger than that of shady slopes and exceeded the range of soil-saturated conductivity, which was useful for plant growth. Meanwhile, the vegetation coverage on sunny slopes was lower than that on shady slopes, but the soil sand content showed the opposite relationship. Pearson's coefficient analysis results showed that vegetation coverage and soil desertification, which are affected by permafrost degradation, were the main factors influencing soil hydrological properties on shady and sunny slopes. These results will help determine appropriate hydraulic parameters for hydrological models in mountain areas.
The Tibetan Plateau has the largest expanse of high-elevation permafrost in the world, and it is experiencing climate warming that may jeopardize the functioning of its alpine ecosystems. Many studies have focused on the effects of climate warming on vegetation production and diversity on the Plateau, but their disparate results have hindered a comprehensive, regional understanding. From a synthesis of twelve warming experiments across the Plateau, we found that warming increased aboveground net primary production (ANPP) and vegetation height at sites with permafrost, but ANPP decreased with warming at non-permafrost sites. Aboveground net primary production responded more negatively to warming under drier conditions, due to both annual drought conditions and warming-induced soil moisture loss. Decreases in species diversity with warming were also larger at sites with permafrost. These results support the emerging understanding that water plays a central role in the functioning of cold environments and suggest that as ecosystems cross a threshold from permafrost to non-permafrost systems, ANPP will decrease across a greater proportion of the Tibetan Plateau. This study also highlights the future convergence of challenges from permafrost degradation and grassland desertification, requiring new collaborations among these currently distinct research and stakeholder groups.