共检索到 2

Tropospheric ozone (O3) threatens agroecosystems, yet its long-term effects on intricate plant-microbe-soil interactions remain overlooked. This study employed two soybean genotypes of contrasting O3-sensitivity grown in field plots exposed elevated O3 (eO3) and evaluated cause-effect relationships with their associated soil microbiomes and soil quality. Results revealed long-term eO3 effects on belowground soil microbiomes and soil health surpass damage visible on plants. Elevated O3 significantly disrupted belowground bacteria-fungi interactions, reduced fungal diversity, and altered fungal community assembly by impacting soybean physiological properties. Particularly, eO3 impacts on plant performance were significantly associated with arbuscular mycorrhizal fungi, undermining their contribution to plants, whereas eO3 increased fungal saprotroph proliferation, accelerating soil organic matter decomposition and soil carbon pool depletion. Free-living diazotrophs exhibited remarkable acclimation under eO3, improving plant performance by enhancing nitrogen fixation. However, overarching detrimental consequences of eO3 negated this benefit. Overall, this study demonstrated long-term eO3 profoundly governed negative impacts on plant-soil-microbiota interactions, pointing to a potential crisis for agroecosystems. These findings highlight urgent needs to develop adaptive strategies to navigate future eO3 scenarios. Soybean, a global staple crop, is used in rotation practices worldwide to decrease fertilizer use due to its symbiotic relationship with soil nitrogen fixation microbes. Soybean, however, is vulnerable to ozone pollution, leading to low performance and yield. As ozone pollution is projected to increase, a crucial task is understanding how ozone damages soybean and soil microbes, which could reveal a crisis in underground ecosystems. This study demonstrates how long-term ozone pollution profoundly degrades plant and soil health by altering plant-microbe-soil interactions. The findings highlight the urgency for adaptive strategies against future food and economic losses resulting from ozone damage.image

期刊论文 2024-03-01 DOI: 10.1111/gcb.17215 ISSN: 1354-1013

Tundra ecosystems are typically carbon (C) rich but nitrogen (N) limited. Since biological N-2 fixation is the major source of biologically available N, the soil N-2-fixing (i.e., diazotrophic) community serves as an essential N supplier to the tundra ecosystem. Recent climate warming has induced deeper permafrost thaw and adversely affected C sequestration, which is modulated by N availability. Therefore, it is crucial to examine the responses of diazotrophic communities to warming across the depths of tundra soils. Herein, we carried out one of the deepest sequencing efforts of nitrogenase gene (nifH) to investigate how 5 years of experimental winter warming affects Alaskan soil diazotrophic community composition and abundance spanning both the organic and mineral layers. Although soil depth had a stronger influence on diazotrophic community composition than warming, warming significantly (P < 0.05) enhanced diazotrophic abundance by 86.3% and aboveground plant biomass by 25.2%. Diazotrophic composition in the middle and lower organic layers, detected by nifH sequencing and a microarray-based tool (GeoChip), was markedly altered, with an increase of alpha-diversity. Changes in diazotrophic abundance and composition significantly correlated with soil moisture, soil thaw duration, and plant biomass, as shown by structural equation modeling analyses. Therefore, more abundant diazotrophic communities induced by warming may potentially serve as an important mechanism for supplementing biologically available N in this tundra ecosystem. IMPORTANCE With the likelihood that changes in global climate will adversely affect the soil C reservoir in the northern circumpolar permafrost zone, an understanding of the potential role of diazotrophic communities in enhancing biological N-2 fixation, which constrains both plant production and microbial decomposition in tundra soils, is important in elucidating the responses of soil microbial communities to global climate change. A recent study showed that the composition of the diazotrophic community in a tundra soil exhibited no change under a short-term (1.5-year) winter warming experiment. However, it remains crucial to examine whether the lack of diazotrophic community responses to warming is persistent over a longer time period as a possibly important mechanism in stabilizing tundra soil C. Through a detailed characterization of the effects of winter warming on diazotrophic communities, we showed that a long-term (5-year) winter warming substantially enhanced diazotrophic abundance and altered community composition, though soil depth had a stronger influence on diazotrophic community composition than warming. These changes were best explained by changes in soil moisture, soil thaw duration, and plant biomass. These results provide crucial insights into the potential factors that may impact future C and N availability in tundra regions.

期刊论文 2019-01-01 DOI: 10.1128/mBio.02521-18
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页