共检索到 4

Root-knot nematodes (RKN) severely reduce watermelon yields worldwide, despite its nutraceutical value. This study investigated the effects of rock dust (RD) and poultry manure (PM) amendments, applied singly or in combination, on RKN suppression and watermelon fruit yield enhancement. A two-trial field experiment was conducted utilizing a randomized complete block design with three replicates. The treatments included RD and PM each applied at 0, 2.5, or 5 t/ha and combined applications of RD and PM at 2.5 or 5 t/ha each. At 60-66 days post-inoculation, root galling and RKN population density were assessed alongside root-shoot weight. The results indicated that root galling in watermelons was reduced by 60-85 % and 67-89 % in the combined RD- and PMtreated plots across the 1st and 2nd trials, respectively, in contrast to the control plots. Likewise, the RKN population was suppressed by 94-99 % in treated plots in both trials, differing from the control plots. Notably, watermelon fruit yield was significantly higher (p < 0.05) in combined RD and PM treated plots, ranging from 24.7 to 33.7 t/ha and 34.6-46.5 t/ha in the 1st and 2nd trials, respectively, compared to control plots with 13.5 t/ha in the 1st trial compared to and 20.9 t/ha yield in the 2nd trial. In conclusion, our study indicates that coapplication of RD and PM effectively reduced RKN damage and enhanced watermelon fruit yield, providing a sustainable strategy for watermelon production.

期刊论文 2025-11-01 DOI: 10.1016/j.cropro.2025.107295 ISSN: 0261-2194

The most damaging disease of oil palm is Fusarium wilt caused by a soilborne fungal pathogen, Fusarium oxysporum f. sp. elaeidis (Foe). The disease is endemic to Africa and affects oil palm production there. Limited Fusarium wilt outbreaks have occurred in South America, but the disease has not yet been reported in South-East Asia. An earlier review of Foe in 2006 provided updates on symptoms, spread and the difficulty in managing the disease. This paper updates our knowledge of oil palm, socio-economic and environmental impacts of cultivation, Fusarium wilt disease epidemiology, Foe detection techniques, disease management strategies and biosecurity perspectives. Breeding for tolerant plant materials has significantly advanced in Africa, but financial constraints in several countries have limited the production of tolerant oil palm seed materials. Other emerging technologies for Foe control are also presented here, acknowledging the specific challenges to help inform the oil palm industry. We highlight the need to strengthen biosecurity plans in disease-free regions. In these countries/regions that are currently free from the pathogen but cultivating susceptible plant materials, biosecurity protocols are essential to reduce threat of disease introduction and spread. Climatic change is another challenge for oil palm-producing countries, both those currently free from the disease and those where Foe is endemic, and should be taken into consideration when planning and implementing biosecurity measures.

期刊论文 2025-05-01 DOI: 10.1111/ppa.14067 ISSN: 0032-0862

Biosurfactants are one of the recently investigated biomolecules that have enormous applications in many fields including agriculture. As there is a need to develop less toxic, and environmentally friendly surfactants, therefore, amino acid-based biosurfactants that are produced from renewable raw materials are of great demand nowadays and can be used as an alternative to conventional chemical surfactants. The negative effects of chemical surfactants present in agrochemicals and modern detergents can damage human health and the environment, thus there is a crucial requirement to explore innovative, well planned, as well as cost-effective natural products for the welfare of humanity. Biodegradable surfactants created through green chemistry, specifically amino acid-based surfactants, are a favourable alternative to avoid these risks. Since amino acids (AAs) are inexhaustible compounds, therefore biosurfactants based on AAs have abundant potential as eco-friendly and environmentally friendly substances. Their higher biodegradation ability, low or even no toxicity, temperature stability, and tolerance to pH fluctuations make these biosurfactants preferable over chemical surfactants. In modern agriculture, most chemical pesticides and fertilizers used are frequently associated with numerous environmental issues. Hence, the development of green molecules as biosurfactants has a promising role in this regard to ensure agricultural sustainability. Biosurfactants can be harnessed for plant pathogen management, plant growth elevation, improving the quality of agricultural soil by soil remediation, degradation of complex hydrocarbons, increasing bioavailability of nutrients for advantageous plant-microbe interactions, and improving plant immunity, hence, they can supersede the grim synthetic surfactants which are presently being used.

期刊论文 2025-02-01 DOI: 10.1134/S1061933X24601021 ISSN: 1061-933X

Sugarcane is an important cash crop grown in 137 countries, accounting for 80% of global sugar production. It supports the livelihood of more than 100 million people and up to 25% of the rural population in some countries. Plant-parasitic nematodes are one significant constraint in sugarcane production and can lead to a loss of up to 30% in productivity. More than 300 species of parasitic nematodes have been discovered in sugarcane soil. Owing to limited data, the potential damage to sugarcane crops caused by parasitic nematodes is often underestimated. The main nematodes present in sugarcane fields are root-lesion (Pratylenchus spp.), spiral (Helicotylenchus spp.), root-knot (Meloidogyne spp.), dagger (Xiphinema spp.), stunt (Tylenchorhynchus spp.), ring (Criconemella spp.), and stubby (Paratrichodorus spp.). Among these, Meloidogyne javanica and Pratylenchus zeae are the most damaging nematode species. Management of nematodes is a challenging task as there are no clear symptoms of their presence, and they often come in multiple species with varying levels of pathogenicity. Moreover, the management options available are not always effective. Integrated nematode management is a sustainable strategy for controlling nematode infestations. It involves using all possible methods to suppress the parasitic nematode population in a compatible manner and reduce it below economic threshold levels. This article focuses on the challenges of managing nematodes in sugarcane and highlights the opportunity for implementing a sustainable nematode management strategy.

期刊论文 2024-10-01 DOI: 10.1094/PDIS-11-23-2479-FE ISSN: 0191-2917
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页