Ice-wedge polygon landscapes make up a substantial part of high-latitude permafrost landscapes. The hydrological conditions shape how these landscapes store and release organic carbon. However, their coupled water-carbon dynamics are poorly understood as field measurements are sparse in smaller catchments and coupled hydrology-dissolved organic carbon (DOC) models are not tailored for these landscapes. Here we present a model that simulates the hydrology and associated DOC export of high-centered and low-centered ice-wedge polygons and apply the model to a small catchment with abundant polygon coverage along the Yukon Coast, Canada. The modeled seasonal pattern of water and carbon fluxes aligns with sparse field data. These modeled seasonal patterns indicate that early-season runoff is mostly surficial and generated by low-centered polygons and snow trapped in troughs of high-centered polygons. High-centered polygons show potential for deeper subsurface flow under future climate conditions. This suggests that high-centered polygons will be responsible for an increasing proportion of annual DOC export compared to low-centered polygons. Warming likely shifts low-centered polygons to high-centered polygons, and our model shows that this shift will cause a deepening of the active layer and a lengthening of the thawing season. This, in turn, intensifies seasonal runoff and DOC flux, mainly through its duration. Our model provides a physical hypothesis that can be used to further quantify and refine our understanding of hydrology and DOC export of arctic ice-wedge polygon terrain.
2024-04-10 Web of ScienceInvestigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system. Water-soluble carbonaceous matter is a heterogeneous mixture of organic compounds that is soluble in aquatic environments. Despite its importance, we still lack systematic understanding for dissolved organic carbon (DOC) in several aspects including exact chemical composition and physical interactions with microorganisms, glacier meltwater. This review presents the chemical composition and physical properties of glacier DOC deposited through anthropogenic emission, terrestrial, and biogenic sources. We present the molecular composition of DOC and its effect over snow albedo and associated radiative forcings. Results indicate that DOC in snow/ice is made up of aromatic protein-like species, fulvic acid-like materials, and humic acid-like materials. Light-absorbing impurities in surface snow and glacier ice cause considerable albedo reduction and the associated radiative forcing is definitely positive. Water-soluble carbonaceous matter dominated the carbon transport in the high-altitude glacial area. Owing to prevailing global warming and projected increase in carbon emission, the glacial DOC is expected to release, which will have strong underlying impacts on cryosphere ecosystem. The results of this work have profound implications for better understanding the carbon cycle in high altitude cryosphere regions. A new compilation of globally distributed work is required, including large-scale measurements of glacial DOC over high-altitude cryosphere regions, to overcome and address the scientific challenges to constrain climate impacts of light-absorbing impurities related processes in Earth system and climate models.
2024-01-01 Web of ScienceAs an important component of carbonaceous matters, dissolved organic carbon (DOC) can absorb and scatter the solar radiation at ultraviolet and blue wavelengths. The wet deposition process has great impact on the concentration and light absorption ability of precipitation DOC, affecting the climatic effect caused by DOC in the atmosphere. In this study, light absorption and fluorescence characteristics of precipitation DOC was investigated in the central Tibetan Plateau (TP). The results showed that the mean DOC concentration and mass absorption cross- measured at 365 nm (MAC365) in Tanggula (TGL) station were 0.59 +/- 0.42 mg/L and 0.37 +/- 0.19 m2/g, respectively, while both values showed much higher volatilities than those of aerosols. DOC concentrations had significant negative correlation with the precipitation amount, while MAC365 values increase with the precipitation amount in TGL station. Therefore, DOC with high light-absorbing ability was preferred to be retained in the atmosphere during wet deposition. In this study, precipitation DOC contained three fluorescent components (one humic-like component and two tyrosine-like components) mainly from local biomass burning sources. DOC concentration showed a negative relationship with MAC365 value in TGL station. The wet deposition of DOC with low light-absorbing ability can reduce the strong negative radiative forcing caused by secondary organic aerosol due to high proportion of DOC in secondary organic carbon. Similar phenomenon was also found in Nam Co, Lulang and Everest stations of previous study, which may have a potential impact on radiative forcing in the atmosphere of TP.
2023-08-01 Web of ScienceDissolved organic carbon (DOC) plays an important role in the carbon cycle, radiative forcing, and biogeochemistry in cryospheric regions. In this study, concentrations, light-absorption properties and bioavailability of DOC from snow cover in Alaska were characterized. Results indicated that average concentrations of DOC in snow of Alaska (0.17-0.30mg L-1) were lower than that found in Asian mountainous glaciers, but higher that found from polar regions snow. No significant trend of DOC was observed during April to May in 2017 due to the short term study; while the vertical variations generally showed a little higher values in the surface snow than that in the sub-surface snow. An obvious characteristic of DOC light-absorbance in snow between the wavelength of 300 and 700nm indicated the mass absorption cross of DOC at 365nm (MAC(DOC365)) was 0.32 +/- 0.24 and 0.37 +/- 0.32m(2) g(-1) for the snow cover at Barrow site (Arctic Ocean coast) and the other Alaskan regions, respectively. The MAC(DOC365) values increased especially during snow melting, indicating the DOC with high MAC values were prone to retain in snow. The proportion of radiative forcing caused by DOC relative to that by black carbon in snow was approximately 2.3%, indicating that DOC in snow should be considered during the accelerated melt of snow cover. The bioavailability experiment of DOC in snow indicated that DOC may be an important bioavailable source for proglacial and coastal ecosystems in Alaskan Arctic regions. Using backward air mass trajectory analysis, we suggested that DOC deposited in snow at Barrow primarily originates from marine or terrestrial air mass, but the specific contribution of different sources cannot be quantified without data related to the DOC's chemical composition and carbon isotopic signatures. This study highlighted the climatic implications of DOC in snow in the Arctic regions.
2021-12Dissolved organic carbon (DOC) makes an important contribution to glacier melting in the Himalayas and the Tibetan Plateau (HTP). Photobleaching can effectively reduce the light absorption ability of DOC, further changing its impact on glacier melting, which is not yet well researched in the HiP. Therefore, snowpit samples from the Bayi, Ganglongjiama (GLJM), Jiemayangong (JMYZ) and Demula (DML) glaciers were collected to study the influence of photobleaching on the light absorption ability of DOC and its impact on glacier melting. The results showed that the DOC concentration of snowpit samples, which was affected by the melting state and photobleaching, decreased from the northern HTP to the southern HIP. At an early stage of melting, the mass absorption cross- value at 365 nm (MAC 365 ) values showed a negative correlation with DOC concentrations in the snowpit at the JMYZ and DML glaciers, indicating that colored DOC tended to be concentrated in the snowpit during the melting process. With the aggravation of ablation, some snowpit samples in the GLJM and Bayi glaciers had both low concentrations and MAC 365 values of DOC due to the reduced influence of photobleaching on the light absorption ability of DOC. Similarly, two fluorescence components (one protein-like component and one hurnic-like component) were identified in the extracted DOC at the JMYZ and DML glaciers, while those components were not detected in the GLJM glacier. Based on the sources of fluorescent DOC and five-day backward air mass trajectories, long-distance transport of pollutants from South Asia was an important source of snowpit DOC in the southern HIP. In this study, photobleaching can effectively remove colored and fluorescent DOC from snowpit samples in the HIP, further reducing the radiation forcing and glacier melting caused by DOC. (C) 2021 Elsevier B.V. All rights reserved.
2021-11-25Manifestations of climate change in the Arctic are numerous and include hydrological cycle intensification and permafrost thaw, both expected as a result of atmospheric and surface warming. Across the terrestrial Arctic dissolved organic carbon (DOC) entrained in arctic rivers may be providing a carbon subsidy to coastal food webs. Yet, data from field sampling is too often of limited duration to confidently ascertain impacts of climate change on freshwater and DOC flows to coastal waters. This study applies numerical modeling to investigate trends in freshwater and DOC exports from land to Elson Lagoon in Northwest Alaska over the period 1981-2020. While the modeling approach has limitations, the results point to significant increases in freshwater and DOC exports to the lagoon over the past four decades. The model simulation reveals significant increases in surface, subsurface (suprapermafrost), and total freshwater exports. Significant increases are also noted in surface and subsurface DOC production and export, influenced by warming soils and associated active-layer thickening. The largest changes in subsurface components are noted in September, which has experienced a similar to 50% increase in DOC export emanating from suprapermafrost flow. Direct coastal suprapermafrost freshwater and DOC exports in late summer more than doubled between the first and last five years of the simulation period, with a large anomaly in September 2019 representing a more than fourfold increase over September direct coastal export during the early 1980s. These trends highlight the need for dedicated measurement programs that will enable improved understanding of climate change impacts on coastal zone processes in this data sparse region of Northwest Alaska.
2021-10-01 Web of ScienceThe mobilization and land-to-ocean transfer of dissolved organic carbon (DOC) in Arctic watersheds is intricately linked with the region's climate and water cycle, and furthermore at risk of changes from climate warming and associated impacts. This study quantifies model-simulated estimates of runoff, surface and active layer leachate DOC concentrations and loadings to western Arctic rivers, specifically for basins that drain into coastal waters between and including the Yukon and Mackenzie Rivers. Model validation leverages data from other field measurements, synthesis studies, and modeling efforts. The simulations effectively quantify DOC leaching in surface and subsurface runoff and broadly capture the seasonal cycle in DOC concentration and mass loadings reported from other studies that use river-based measurements. A marked east-west gradient in simulated spring and summer DOC concentrations of 24 drainage basins on the North Slope of Alaska is captured by the modeling, consistent with independent data derived from river sampling. Simulated loadings for the Mackenzie and Yukon show reasonable agreement with estimates of DOC export for annual totals and four of the six seasonal comparisons. Nearly equivalent loading occurs to rivers which drain north to the Beaufort Sea and west to the Bering and Chukchi Seas. The modeling framework provides a basis for understanding carbon export to coastal waters and for assessing impacts of hydrological cycle intensification and permafrost thaw with ongoing warming in the Arctic.
2021-10-01 Web of ScienceInvestigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system. Water-soluble carbonaceous matter is a heterogeneous mixture of organic compounds that is soluble in aquatic environments. Despite its importance, we still lack systematic understanding for dissolved organic carbon (DOC) in several aspects including exact chemical composition and physical interactions with microorganisms, glacier meltwater. This review presents the chemical composition and physical properties of glacier DOC deposited through anthropogenic emission, terrestrial, and biogenic sources. We present the molecular composition of DOC and its effect over snow albedo and associated radiative forcings. Results indicate that DOC in snow/ice is made up of aromatic protein-like species, fulvic acid-like materials, and humic acid-like materials. Light-absorbing impurities in surface snow and glacier ice cause considerable albedo reduction and the associated radiative forcing is definitely positive. Water-soluble carbonaceous matter dominated the carbon transport in the high-altitude glacial area. Owing to prevailing global warming and projected increase in carbon emission, the glacial DOC is expected to release, which will have strong underlying impacts on cryosphere ecosystem. The results of this work have profound implications for better understanding the carbon cycle in high altitude cryosphere regions. A new compilation of globally distributed work is required, including large-scale measurements of glacial DOC over high-altitude cryosphere regions, to overcome and address the scientific challenges to constrain climate impacts of light-absorbing impurities related processes in Earth system and climate models.
2021-06Our understanding of water-soluble organic constituents and their transformation in the unique aqueous continuum over cryosphere region is scarce. Here, dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved total nitrogen (DTN) and water-soluble inorganic ions in multiple water bodies from the eastern Tibetan Plateau (TP) cryosphere are systematically determined from a suite of field campaigns, laboratory experiments, linear regression analysis, and multiple comparisons, etc. We found that the water bodies located at high elevation have much lower DOC contents compared to the samples at lower elevation, there has significant altitude dependence of DOC abundance in water bodies over the study area (elevation range: 1971-4700 m asl). Comparison of optical properties, source apportionment, chemical analysis and model simulation of the water bodies provide evidence that the atmospheric deposition of organic species in high mountains is transported to plateau lakes in the northeast of TP via alpine runoff (45%) and snow/ice meltwater (20%). Further, dominance of anthropogenic activities in lower elevations can contribute (35%) to the observed altitudinal dependency. Thus, this preliminary study represents the first systematic investigation of the transport and cycling of organic carbonaceous matter and nitrogenous matter in eastern TP and warrants more robust in-situ observations and measurements in future in High Mountains of Asia.
2021-03-01Permafrost thaw in Arctic watersheds threatens to mobilize hitherto sequestered carbon. We examine the radiocarbon activity ((FC)-C-14) of dissolved organic carbon (DOC) in the northern Mackenzie River basin. From 2003-2017, DOC-(FC)-C-14 signatures (1.00 0.04; n = 39) tracked atmospheric (CO2)-C-14, indicating export of modern carbon. This trend was interrupted in June 2018 by the widespread release of aged DOC (0.85 0.16, n = 28) measured across three separate catchment areas. Increased nitrate concentrations in June 2018 lead us to attribute this pulse of C-14-depleted DOC to mobilization of previously frozen soil organic matter. We propose export through lateral perennial thaw zones that occurred at the base of the active layer weakened by preceding warm summer and winter seasons. Although we are not yet able to ascertain the broader significance of this anomalous mobilization event, it highlights the potential for rapid and large-scale release of aged carbon from permafrost. Plain Language Summary The thaw of continuously frozen grounds in the Arctic induced by regional warming accelerates the release of carbon to the atmosphere and river systems. Of particular concern is the fate of dissolved organic carbon (DOC) due to its potential for rapid oxidation to carbon dioxide. In order to understand the ramifications of a warming climate, we analyze the radiocarbon age of DOC in the northern Mackenzie River-a major Arctic river basin. DOC in large Arctic rivers has been characterized by young radiocarbon ages, from modern vegetation and surface soils. In June 2018, we recorded a departure from long-term observations: Older DOC was measured in three large catchments draining into the Mackenzie Delta. This release of aged DOC followed a warm summer and the second warmest winter on record. We infer that the aged DOC derived from thaw of deeper soil horizons and subsequent carbon mobilization and riverine export. This is the first time such an event has been documented; it highlights the potential for abrupt and widespread aged DOC export with important implications for regional and global carbon cycles. Key Points A widespread pulse of aged dissolved organic carbon (DOC) occurred in the Mackenzie River and its tributaries in June 2018 Export of aged DOC is consistent with a prolonged warming period and the formation of supra-permafrost taliks Mobilization of aged DOC and nitrate suggests percolation of supra-permafrost groundwater through previously frozen soil layers
2020-11-28 Web of Science