In performance-based design, it is crucial to understand deformation characteristics of geocell layers in soil under footing loads. To explore this, a series of laboratory loading tests were carried out to investigate the influence of varying parameters on the strain levels within the geocell layer in a sandy soil under axial strip footing loading. The results were analyzed in terms of maximum strain levels, strain variation along the geocell layer and the correlation between horizontal and vertical strains. In this study, the maximum observed strain levels for geocellreinforced strip footing systems reached 2.3 % for horizontal (tensile) strain and 1.4 % for vertical (compressive) strain. Furthermore, most strain levels were concentrated within a distance of 1.5 times the footing width from the axis of strip footing. In geocell-reinforced footing systems, the interaction between horizontal and vertical strains becomes a key factor, with the ratio of horizontal to vertical cell wall strains ranging approximately from 1 to 2.5. The outcomes of this study are expected to contribute to the practical applications of geocell-reinforced footing systems.
Alkali-activated concrete (AAC) is a focal point in green building material research due to its low carbon footprint and superior performance. This study seeks to enhance the impact resistance of recycled aggregate concrete (RAC) by elucidating the synergistic mechanisms of alkali activation, nano-modification, and fiber reinforcement. To this end, four mix designs, incorporating NaOH and NaOH-Na2SiO3 systems with 2 % nano-SiO2(NS), were developed and assessed through setting time, compressive strength, drop hammer impact tests, and XRD/ SEM analyses. The NaOH-Na2SiO3 system exhibited a 23.5 % increase in compressive strength over NaOH, achieving 28.41 MPa, while NS refined pore structures, elevating strength to 32.2 MPa; XRD/SEM analyses confirmed mechanisms of pore refinement and interfacial enhancement. In the optimized system, the NT12-C5 formulation, incorporating polypropylene fiber (PPF) and recycled carbon fiber (RCF), exhibited superior impact resistance, with NS enhancing interfacial bonding between carbon fiber and the matrix, resulting in a 47.8 % increase in initial crack impact energy. The Weibull model validated the reliability of impact performance. Furthermore, life cycle assessment revealed that Soil Solidification Rock Recycled aggregate concrete (SSRRAC) substantially reduced carbon emissions compared to ordinary Portland cement (OPC), while maintaining competitive economic costs. This study's innovations include: (1) synergistic optimization of low-carbon AAC performance using NaOH-Na2SiO3 and NS; (2) optimized PPF/RCF formulations promoting the reuse of waste carbon fiber; and (3) application of the Weibull model to overcome conventional statistical constraints. Collectively, these findings establish a theoretical and practical foundation for the global development of sustainable building materials.
In the northwestern saline soils and coastal areas, cement soil (CS) materials are inevitably subjected to various factors including salt erosion, dry-wet cycle (DWC), temperature fluctuations and dynamic loading during its service life, which the coupling effect of these unfavourable factors seriously threatened the durability and engineering reliability of CS materials. Additionally, combined with the substantially extensive application prospects of rubber cementitious material, as a resource-efficient civil engineering material and fibre-reinforced composites, consequently, in order to address aforementioned issues, this investigation proposed to consider the incorporation of rubber particles composite basalt fiber (BF) to CS materials as an innovative engineering solution to effectively enhance the mechanical and durability properties of CS materials for prolonging its service life. In this study, sulphate ions were utilized to simulate external erosive environment and basalt fibre rubber cement soil (BFRCS) specimens were subjected to various DWC numbers (0, 1, 4, 7, 11 and 15) in diverse concentrations (0 g/L, 6 g/L and 18 g/L) of Na2SO4 solution, and specimens that had completed the corresponding DWC number were then conducted both unconfined and dynamic compressive strength tests simultaneously to analyze static and dynamic stress-strain curves, static and dynamic compressive strength, apparent morphological deterioration characteristics and energy absorption properties of BFRCS specimens. Furthermore, further qualitative and quantitative damage assessments of pore distribution and microscopic morphology of BFRCS specimens under various DWC sulphate erosion environments were carried out from the fine and microscopic perspectives through pore structure test and scanning electron microscopy (SEM) test, respectively. The test results indicated that the static, dynamic compressive strength and specific energy absorption (SEA) of BFRCS specimens exhibited a slight increase followed by a progressive decline as DWC number increased. Additionally, compared to 4 mm BFRCS specimens, those with 0.106 mm rubber particle size demonstrated more favorable resistance to DWC sulphate erosion. The air content, bubble spacing coefficient and average bubble chord length of BFRCS specimens all progressively grew as DWC number increased, while the specific surface area of pores gradually decreased. The effective combination of BF with CS matrix significantly diminished pores and weak areas within specimen, and its synergistic interaction with rubber particles efficiently mitigated the stresses associated with expansive, contraction, crystallization and osmosis subjected by specimen. Simultaneously, more ettringite (AFt) had been observed within BFRCS specimens in 18 g/L sulphate erosive environments. These findings will facilitate the design and construction of CS subgrade engineering in northwestern saline soils and coastal regions, promoting sustainable and durable solutions while reducing the detrimental environmental impact of waste rubber.
In the dynamic response analysis of slopes, the displacement of sliding surfaces is an important indicator for assessing stability. However, due to the uniform dynamic parameters of the Newmark slide block method, it is difficult to accurately analyze the displacements of large-scale slopes. To address this issue, the spatial distribution characteristics of dynamic parameters need to be considered to accurately analyze the stability of slopes. Under the combined action of rainfall and reservoir water level change, the Shiliushubao old landslide in the Three Gorges Reservoir area remains stable. To investigate the seismic stability of slopes, simulated seismic waves were employed. Firstly, the dynamic triaxial test, designed with cyclic loading, was employed to investigate the variation rules of the dynamic parameters of slope soil, and to establish a functional relationship. Then, the stochastic seismic motion model was used to generate artificially seismic waves in the Three Gorges Reservoir Area. Finally, to assess the stability of the old landslide, finite element software, GeoStudio 2018 was used to obtain the spatial distribution characteristics of the dynamic parameters and to calculate the permanent displacements of the reservoir bank slope by inputting random ground motion loads and dynamic characteristic functions. It is demonstrated that under the most unfavorable working conditions of heavy rainfall and the earthquake in the specific region, the permanent displacement of the Shiliushubao old landslide will be less than the critical permanent displacement, the old landslide is not to experience instability again.
On December 18, 2023, an Ms6.2 earthquake struck Jishishan County, Gansu Province, in western China. The China Earthquake Early Warning Network (CEEWN) captured extensive near-field ground motion data using high-density microelectromechanical system (MEMS) sensors and force-balanced accelerographs (FBAs). Through noise level and usable frequency range assessments of MEMS/FBA recordings, we compiled a strong- motion dataset encompassing the Ms6.2 mainshock and 13 aftershocks (Ms >= 3.0). Analysis of this dataset revealed distinct source characteristics and site effects through spatial distributions and attenuation patterns of peak ground acceleration (PGA, up to 1.1 g at station N002B), peak ground velocity (PGV), and spectral accelerations (SAs) across various periods. The mainshock's near-fault motions exhibited pronounced short-period energy, with 0.2 s SAs exceeding 1.0 gin intensity zones VII-VIII due to hanging wall effects, soil amplification, and topographic influences. Site-to-reference ratio (SSR) analysis identified site nonlinearity above 1 Hz and amplification between 1 and 10 Hz. Observed PGAs and short-period SAs surpassed ground motion model (GMM) predictions with faster attenuation rates, while long-period SAs (>1.0 s) remained below predictions. Residual analysis of intensity measures (IMs) and horizontal-to-vertical spectral ratios (HVSRs) demonstrated progressive site nonlinearity, showing HVSR frequency reductions and amplitude declines at PGAs >500 cm/s(2). This dataset advances regional ground motion model (GMM) development, while our findings on strong ground motion characteristics offer critical insights for earthquake damage assessment and post-disaster reconstruction.
Roots can mechanically reinforce soils against landslides, but the impact of their typically random and complex distribution on this reinforcement is not well understood. Here, using a modelling approach based on homogenization theory, we aim to assess the effect of the randomness and complexity of root spatial distribution in soils on the mechanical properties of the soil-root composite and the resulting reinforcement. To do this, we modeled the soil-root composite as a three-dimensional (3D) soil column through which parallel roots penetrate vertically. The unit cell (UC) of the soil-root composites with a nonuniform root distribution was created based on the characteristics of root diameter distributions of Elymus dahuricus measured in the field, and the equivalent elastic modulus and strength parameters of the composites were calculated. The accuracy of the homogenization method was verified by direct shear tests with undisturbed soil-root samples. The results showed that the UC model of the soil-root composites could effectively predict its equivalent elastic parameters. A parametric analysis using the proposed homogenization model showed that roots can mobilize significant soil portions to resist deformation by increasing both the number and complexity of root distributions, even at the same root volume ratio. This makes the stress distribution in the soil more uniform and improves the shear strength of the soil-root composites. The presence of Elymus dahuricus roots significantly improved the shear strength of the soil-root composites, primarily due to an increase in cohesion of 23%. This study presents a new perspective on the development of a constitutive model for soil-root composites and highlights its potential value for engineering applications that use roots to reinforce soils.
Research on urban flood risk has highlighted the need for more comprehensive flood risk assessments in low-income and vulnerable communities. This study aims to examine the causes, impacts and existing flood risk management measures in the Somali region of Ethiopia. The study used a mixed research methodology, including a cross-sectional survey, to collect original qualitative and quantitative data.. In addition to flood risk and vulnerability assessment, the study evaluated urban flood risk management measures through soil protection service curve number, production distribution network and supply chain risk management methods.The results suggest that flooding in Dolo-Ado is increasing due to heavy rainfall and flooding, as well as inadequate flood control measures and geographical location. Soil Conservation Service Curve Number analysis shows that the arid landscape of Dolo-ado is predominantly shrub and barren with significant differences in land cover types. The low infiltration capacity, high runoff potential and frequent heavy rainfall are the main factors contributing to the area's high soil vulnerability to flash floodsConsequently, qualitative results also confirm that this has resulted in extensive infrastructure damage, displacement, loss of livelihoods, ecosystem disruption and disruption to community life, as well as water and health problems. In addition, flood risks are more severe for vulnerable urban communities, impacting services, the economy and the environment. Therefore, inadequate preventive measures for effective supply chain management are urgent and crucial for resilience. This study implies that urban planning and policies should be changed and prioritize the integration of production distribution networks and flood risk management in the supply chain to effectively mitigate floods. Climate change-responsive and integrated urban planning, improved drainage systems, early warning, emergency planning and community engagement are critical for flood preparedness, adaptation and resilience and require further research and modeling techniques.
To overcome the limitations of microscale experimental techniques and molecular dynamics (MD) simulations, a coarse-grained molecular dynamics (CGMD) method was used to simulate the wetting processes of clay aggregates. Based on the evolution of swelling stress, final dry density, water distribution, and clay arrangements under different target water contents and dry densities, a relationship between the swelling behaviors and microstructures was established. The simulated results showed that when the clay-water well depth was 300 kcal/mol, the basal spacing from CGMD was consistent with the X-ray diffraction (XRD) data. The effect of initial dry density on swelling stress was more pronounced than that of water content. The anisotropic swelling characteristics of the aggregates are related to the proportion of horizontally oriented clay mineral layers. The swelling stress was found to depend on the distribution of tactoids at the microscopic level. At lower initial dry density, the distribution of tactoids was mainly controlled by water distribution. With increase in the bound water content, the basal spacing expanded, and the swelling stresses increased. Free water dominated at higher water contents, and the particles were easily rotated, leading to a decrease in the number of large tactoids. At higher dry densities, the distances between the clay mineral layers decreased, and the movement was limited. When bound water enters the interlayers, there is a significant increase in interparticle repulsive forces, resulting in a greater number of small-sized tactoids. Eventually, a well-defined logarithmic relationship was observed between the swelling stress and the total number of tactoids. These findings contribute to a better understanding of coupled macro-micro swelling behaviors of montmorillonite-based materials, filling a study gap in clay-water interactions on a micro scale. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
We evaluated the morphology, geomorphic settings, and micrometeorological controls of sorted polygons, stripes, lobate patterns, and turf-banked terraces in two summit areas of Daisetsu Mountain, Japan, using orthophoto images and digital surface models generated from unmanned aerial vehicle observations and structure-from-motion techniques and in situ records of air temperature, wind speed/direction and ground temperatures. The sorted polygons on flat terrain are equiform and large (3.5 m in mean length), but on gentle slopes, they are elliptical and small (2.9 m). Sorted stripes and lobate patterns occur on slope steeper than 3.5 degrees-4.5 degrees. The form transition of sorted patterned grounds is considered due to activities of frost heave and thaw settlement, gelifluction, and frost creep, as well as the spatial pattern of soil wetness. In the windward slopes steeper than 3.5 degrees-4.5 degrees, the ground materials move downslope, forming lobate patterns and sorted stripes. On the flat surfaces and leeward slopes, snow accumulation prevents soils from cooling in winter, provides snowmelts to the soils, and thus thickens the seasonal thawing during summer, allowing sorting at greater depths and enlarging the diameters of the frost patterned forms. Snow redistribution and snowmelt infiltration produce locally moist soils, creating favorable environments for plant growth on leeward, that is, eastward sides of microtopography. Soil movements along slopes are dammed on the slope covered with dense vegetation cover where risers of turf-banked terrace are formed. This is the explanation why the turf-banked terraces are typically facing slightly eastward from principal slope direction.
In cold-region high-speed railway (HSR) subgrade engineering, coarse-grained soils are commonly used as frost heave prevention fillers. However, coupled water-heat migration during freeze-thaw cycles still induces frost heave. This study innovatively employs a nuclear magnetic resonance (NMR) system to elucidate the hydro-thermal transport mechanisms in coarse-grained soils during freezing. The results reveal that under identical temperature and freezing duration, high-water-content soils release substantial latent heat from pore water freezing, resulting in higher freezing zone temperatures than low-water-content soils. During freezing, unfrozen water content decreases as a power function with freezing time at different depths of soil samples, with the frozen zone experiencing the fastest water reduction, followed by the freezing front and then the unfrozen zone. Both free and bound water progressively decrease in frozen and unfrozen zones. After freeze-thaw, the change in soil pore structure leads to a decrease in bound water and an increase in free water in frozen zones, while both decrease in unfrozen zones. Furthermore, higher initial water content results in more pronounced reductions of bound water and increases of free water in frozen zones. These findings advance the understanding of hydro-thermal coupling mechanisms and provide theoretical foundations for frost damage mitigation in high-speed railway subgrades.