Soil freeze-thaw cycles play a critical role in ecosystem, hydrological and biogeochemical processes, and climate. The Tibetan Plateau (TP) has the largest area of frozen soil that undergoes freeze-thaw cycles in the low-mid latitudes. Evidence suggests ongoing changes in seasonal freeze-thaw cycles during the past several decades on the TP. However, the status of diurnal freeze-thaw cycles (DFTC) of shallow soil and their response to climate change largely remain unknown. In this study, using in-situ observations, the latest reanalysis, machine learning, and physics-based modeling, we conducted a comprehensive assessment of the spatiotemporal variations of DFTC and their response to climate change in the upper Brahmaputra (UB) basin. About 24 +/- 8% of the basin is subjected to DFTC with a mean frequency of 87 +/- 55 days during 1980-2018. The area and frequency of DFTC show small long-term changes during 1980-2018. Air temperature impacts on the frequency of DFTC changes center mainly around the freezing point (0 degrees C). The spatial variations in the response of DFTC to air temperature can primarily be explained by three factors: precipitation (30.4%), snow depth (22.6%) and seasonal warming/cooling rates (14.9%). Both rainfall and snow events reduce diurnal fluctuations of soil temperature, subsequently reducing DFTC frequency, primarily by decreasing daytime temperature through evaporation-cooling and albedo-cooling effects, respectively. These results provide an in-depth understanding of diurnal soil freeze-thaw status and its response to climate change. Freeze-thaw transitions of terrestrial landscapes are a common phenomenon in cold regions. The seasonal and diurnal freeze-thaw cycles (DFTC) of shallow soil exhibit substantial differences in response to climate. Understanding of the spatiotemporal patterns of DFTC and their response to climate change remains limited over the Tibetan Plateau (TP), which is characterized by the largest areas of freeze-thaw terrain in the mid- and low-latitudes of the world. We found the frequency and area of DFTC show a slight increase trend in a significantly warming climate in upper Brahmaputra (UB) basin, the largest river basin of the TP. The variation of DFTC depends on climatic conditions, with soils near the freezing point (0 degrees C) being more susceptible to changes in DFTC. Precipitation, snow depth and seasonal warming/cooling rates are the top three factors influencing the response of DFTC to air temperature changes. Snowfall plays a more important role in the temporal variability of DFTC frequency than rainfall. The number of diurnal freeze-thaw cycles (DFTC) in shallow soil increase slightly during the period 1980-2018 in the upper Brahmaputra (UB) basin Air temperature effects on the changes in DFTC frequency center on the freezing point Snowfall plays a more important role in the temporal variability of DFTC than rainfall
2024-10-28 Web of ScienceUnderstanding the impacts of diurnal freeze-thaw cycles (DFTCs) on soil microorganisms and greenhouse gas emissions is crucial for assessing soil carbon and nitrogen cycles in the alpine ecosystems. However, relevant studies in the permafrost regions in the Qinghai-Tibet Plateau (QTP) are still lacking. In this study, we used high-throughput pyrosequencing and static chamber-gas chromatogram to study the changes in topsoil bacteria and fluxes of greenhouse gases, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), during autumn DFTCs in the permafrost regions of the Shule River headwaters on the western part of Qilian Mountains, northeast margin of the QTP. The results showed that the bacterial communities contained a total of 35 phyla, 88 classes, 128 orders, 153 families, 176 genera, and 113 species. The dominant phyla were Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Gemmatimonadetes. Two DFTCs led to a trend of increasing bacterial diversity and significant changes in the relative abundance of 17 known bacteria at the family, genus, and species levels. These were predominantly influenced by soil temperature, water content, and salinity. In addition, CO2 flux significantly increased while CH4 flux distinctly decreased, and N2O flux tended to increase after two DFTCs, with soil bacteria being the primary affecting variable. This study can provide a scientific insight into the impact of climate change on biogeochemical cycles of the QTP.
2022-12-01 Web of ScienceUnderstanding the impacts of diurnal freeze-thaw cycles (DFTCs) on soil microorganisms and greenhouse gas emissions is crucial for assessing soil carbon and nitrogen cycles in the alpine ecosystems. However, relevant studies in the permafrost regions in the Qinghai-Tibet Plateau (QTP) are still lacking. In this study, we used high-throughput pyrosequencing and static chamber-gas chromatogram to study the changes in topsoil bacteria and fluxes of greenhouse gases, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), during autumn DFTCs in the permafrost regions of the Shule River headwaters on the western part of Qilian Mountains, northeast margin of the QTP. The results showed that the bacterial communities contained a total of 35 phyla, 88 classes, 128 orders, 153 families, 176 genera, and 113 species. The dominant phyla were Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Gemmatimonadetes. Two DFTCs led to a trend of increasing bacterial diversity and significant changes in the relative abundance of 17 known bacteria at the family, genus, and species levels. These were predominantly influenced by soil temperature, water content, and salinity. In addition, CO2 flux significantly increased while CH4 flux distinctly decreased, and N2O flux tended to increase after two DFTCs, with soil bacteria being the primary affecting variable. This study can provide a scientific insight into the impact of climate change on biogeochemical cycles of the QTP.
2020-02