共检索到 2

Long-term fine-scale dynamics of surface hydrology in Arctic tundra ponds (less than 1ha) are largely unknown; however, these small water bodies may contribute substantially to carbon fluxes, energy balance, and biodiversity in the Arctic system. Change in pond area and abundance across the upper Barrow Peninsula, Alaska, was assessed by comparing historic aerial imagery (1948) and modern submeter resolution satellite imagery (2002, 2008, and 2010). This was complemented by photogrammetric analysis of low-altitude kite-borne imagery in combination with field observations (2010-2013) of pond water and thaw depth transects in seven ponds of the International Biological Program historic research site. Over 2800 ponds in 22 drained thaw lake basins (DTLB) with different geological ages were analyzed. We observed a net decrease of 30.3% in area and 17.1% in number of ponds over the 62year period. The inclusion of field observations of pond areas in 1972 from a historic research site confirms the linear downward trend in area. Pond area and number were dependent on the age of DTLB; however, changes through time were independent of DTLB age, with potential long-term implications for the hypothesized geomorphologic landscape succession of the thaw lake cycle. These losses were coincident with increases in air temperature, active layer, and density and cover of aquatic emergent plants in ponds. Increased evaporation due to warmer and longer summers, permafrost degradation, and transpiration from encroaching aquatic emergent macrophytes are likely the factors contributing to the decline in surface area and number of ponds.

期刊论文 2015-03-01 DOI: 10.1002/2014JG002778 ISSN: 2169-8953

The permafrost of the Western Canadian Arctic has a very high ground ice content. As a result, the vast number of thaw takes in this area are very sensitive to it changing climate. With thaw lakes prone to either increases in area due to thermokarst processes, or complete drainage in less than one day due to melting of channels through ice-rich permafrost. After a lake drains, it leaves a topographic basin that is often termed a Drained Thaw Lake Basin (DTLB). An analysis of aerial photographs and topographic maps showed that 41 lakes drained in the study area between 1950 and 2000, for a rate of slightly less than one lake per year. The rate of drainage over three time periods (1950-1973. 1973-1985, 1985-2000), decreased from over 1 lake/year to approximately 0.3 lake/year. The reason for this decrease is not known, but it is hypothesized that it is related to the effect of a warming climate. There is a large spatial variation in DTLBs, with higher number of drained lakes in physiographic areas with poor drainage. It is likely that this variation is related to variations in ground ice. Although previous Studies have suggested that lakes drain during periods of high water level, it is likely that a combination of it warm summer, a resulting deep active layer, and a moderately high lake level were responsible for the drainage of a lake in the study area during the summer of 1989. Although this study has documented changes in the rate of lake drainage over a 50-year period, there is a need for further research to better understand the complex interactions between climate, geomorphology, and hydrology responsible for this change, and to further consider the potential hazard rapid lake drainage poses to future industrial or resource development in the area. Copyright (C) 2008 John Wiley & Sons, Ltd and Her Majesty the Queen in right of Canada. The contributions of P. Marsh, M. Russell, H. Haywood and C. Onclin belong to the Crown in right of Canada and are reproduced with the permission of Environment Canada.

期刊论文 2009-01-01 DOI: 10.1002/hyp.7179 ISSN: 0885-6087
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页