Nonsorted circles and earth hummocks are important landscape components of the arctic tundra. Here we describe the vegetation on these frost-heave features at seven study sites along a N-S-transect from the Arctic Ocean to the Arctic Foothills, Alaska. We established 117 releves in frost-heave features and surrounding tundra and classified the vegetation according to the Braun-Blanquet sorted-table method. We used Detrended Correspondence Analysis to analyze relationships between vegetation and environmental variables. We identified nine communities: Braya purpurascens-Puccinellia angustata community (dry nonsorted circles, subzone C); Dryas integrifolia-Salix arctica community (dry tundra, subzone C); Salici rotundifoliae-Caricetum aquatilis ass. nov. (moist coastal tundra, subzone C); Junco biglumis-Dryadetum integrifoliae ass. nov. (moist nonsorted circles, subzone D); Dryado integrifoliae-Caricetum bigelowii Walker et al. 1994 (moist tundra, subzone D); Scorpidium scorpioides-Carex aquatilis community (wet tundra, subzone D); Cladino-Vaccinietum vitis-idaeae ass. nov. (dry nonsorted circles and earth hummocks, subzone E); Sphagno-Erlophoretum vaginati Walker et al. 1994 (moist tundra, subzone E); and Anthelia juratzkana-Juncus biglumis community (wet nonsorted circles, subzone E). The DCA ordination displayed the vegetation types with respect to complex environmental gradients. The first axis of the ordination corresponds to a bioclimate/pH gradient, and the second axis corresponds to a disturbance/soil moisture gradient. Frost-heave features are dominated by lichens, whereas the adjacent tundra supports more dwarf shrubs, graminoids and mosses. Frost-heave features have greater thaw depths, more bare ground, thinner organic horizons and lower soil moisture than the surrounding tundra. The morphology of frost-heave features changes along the climatic gradient, with large, barren nonsorted circles dominating the northern sites and vegetated, less active earth hummocks dotting the southern sites. Thawing of permafrost and a possible shift in plant community composition due to global warming could lead to a decline in frost-heave features and result in the loss of landscape heterogeneity.
The distribution of segregated ice and soluble ions in near-surface permafrost were investigated in hummocky terrain near Inuvik, Northwest Territories. Soil water content profiles from analyses of drill cores indicate that ice-poor permafrost developed beneath a permafrost table aggrading at approximately 4 cm/a, but an ice-rich zone, 10 to 20 cm thick, was observed beneath a permafrost table that had remained stable for about a decade. Ice-rich intervals 10 to 30 cm thick were observed immediately beneath both a thaw unconformity formed in 1981 and an older, deeper unconformity. In profile, the correspondence between zones of cation and ice enrichment suggests soluble materials were incorporated into permafrost during development of near-surface aggradational ice. Moisture enrichment below an experimentally degrading permafrost table was negligible. Similar ice contents beneath the present permafrost table and the deep thaw unconformity, and the preservation of ice-poor intervals immediately above the 1981 and deep thaw unconformities indicate limited vertical ice enrichment. The estimated rates of ice accumulation in two-decade-old permafrost are on the order of mm/a, but ice accumulation above older unconformities indicates that, in aggregate, these initial rates decrease with time. The ground ice and soluble cations sequestered in near-surface permafrost comprise an important pool of water and nutrients that may be released into the active layer during periods of deeper thaw. Copyright (C) 2003 John Wiley Sons, Ltd.