共检索到 3

Boreal peatlands are critical ecosystems globally because they house 30%-40% of terrestrial carbon (C), much of which is stored in permafrost soil vulnerable to climate warming-induced thaw. Permafrost thaw leads to thickening of the active (seasonally thawed) layer and alters nutrient and light availability. These physical changes may influence community-level plant functional traits through intraspecific trait variation and/or species turnover. As permafrost thaw is expected to cause an efflux of carbon dioxide (CO2) and methane (CH4) from the soil to the atmosphere, it is important to understand thaw-induced changes in plant community productivity to evaluate whether these changes may offset some of the anticipated increases in C emissions. To this end, we collected vascular plant community composition and foliar functional trait data along gradients in aboveground tree biomass and active layer thickness (ALT) in a rapidly thawing boreal peatland, with the expectation that changes in above- and belowground conditions are indicative of altered resource availability. We aimed to determine whether community-level traits vary across these gradients, and whether these changes are dominated by intraspecific trait variation, species turnover, or both. Our results highlight that variability in community-level traits was largely attributable to species turnover and that both community composition and traits were predominantly driven by ALT. Specifically, thicker active layers associated with permafrost-free peatlands (i.e., bogs and fens) shifted community composition from slower-growing evergreen shrubs to faster-growing graminoids and forbs with a corresponding shift toward more productive trait values. The results from this rapidly thawing peatland suggest that continued warming-induced permafrost thaw and thermokarst development alter plant community composition and community-level traits and thus ecosystem productivity. Increased productivity may help to mitigate anticipated CO2 efflux from thawing permafrost, at least in the short term, though this response may be swamped by increase CH4 release.

期刊论文 2021-08-01 DOI: 10.1002/ece3.7818 ISSN: 2045-7758

How the greening of Arctic landscapes manifests as a change in ecosystem structure and function remains largely unknown. This study investigates the likely implications of plant community change on ecosystem function in tundra near Barrow, Alaska. We use structural data from marked plots, established in 1972 and resampled in 1999, 2008 and 2010 to assess plant community change. Ecosystem functional studies were made close to peak growing season in 2008 and 2010 on destructive plots adjacent to marked plots and included measurement of land-atmosphere CH4 and CO2 exchange, hyperspectral reflectance, albedo, water table height, soil moisture, and plant species cover and abundance. Species cover and abundance data from marked and destructive plots were analyzed together using non-metric multi-dimensional scaling (NMS) ordination. NMS axis scores from destructive plots were used to krig ecosystem function variables in ordination space and produce surface plots from which time series of functional attributes for resampled plots were derived. Generally, the greatest functional change was found in aquatic and wet plant communities, where productivity varied and soil moisture increased, increasing methane efflux. Functional change was minimal in moist and dry communities, which experienced a general decrease in soil moisture availability and appeared overall to be functionally more stable through time. Findings suggest that the Barrow landscape could have become less productive and less responsive to change and disturbance over the past few decades. This study is a contribution to the International Polar Year-Back to the Future Project (512).

期刊论文 2012-01-01 DOI: 10.1088/1748-9326/7/1/015507 ISSN: 1748-9326

The Kobuk River runs west along the southern Brooks Range from Gates of the Arctic National Park in Alaska, USA, to the Chukchi Sea. It is highly vulnerable to changes in climate due to its sub-Arctic location, unique geography, and permafrost foundation. Combined with its pristine condition, these qualities make the Kobuk an ideal system upon which to build a conceptual model for predicting ecosystem effects of climate change. We constructed a conceptual ecosystem model for the Kobuk River synthesizing surveyed baseline hydrologic, geomorphic and biotic conditions with literature on Arctic rivers. While the mainstem Kobuk has limited biological productivity, it provides spawning habitat and connectivity for large resident and migratory fish that rely upon off-channel habitat for food resources. System function is dependent largely on intermittent pulse flows that connect riverine habitats, allowing periods of late summer high productivity in off-channel habitat. Spring break-up and hill slope processes are critically important for maintaining habitat complexity and inter-connectivity. Climate change models predict the region will experience a disproportionate increase in average winter air temperature relative to summer temperatures, in the number of ice-free days, and in annual rainfall. Our conceptual model predicts that changes to fish and invertebrate populations on the Kobuk River will result not from physiological responses to increased temperatures, but rather to shifts in two main physical drivers: 1) spring break-up intensity, resulting in changes to scour rate and sediment deposition; and 2) discontinuous permafrost melt, resulting in widespread heterogeneous zones of active layer thickening and thermokarsting. The interaction of these two drivers offers four potential scenarios of geomorphic change in the system and four dramatically different biological outcomes. This model should help managers and scientists evaluate the magnitude and direction of ecosystem changes as they occur within the Kobuk system and potentially other sub-Arctic river systems.

期刊论文 2011-04-01 DOI: 10.1890/ES10-00111.1 ISSN: 2150-8925
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页