A scenario-based approach was used to test air and ground response to warming with and without changes to inverted surface lapse rates in four Yukon valleys. Generally, climate warming coupled with weakening of temperature inversions resulted in the greatest increase in air temperature at low elevations. However, ground temperatures at high elevations showed the greatest response to warming and variability between scenarios due to increased connectivity between air and ground. Low elevations showed less of a response to warming and permafrost was largely preserved in these locations. Local models also predicted higher permafrost occurrence compared to a regional permafrost probability model, due to the inclusion of differential surface and thermal offsets. Results show that the spatial warming patterns in these mountains may not follow those predicted in other mountain environments following elevation-dependent warming (EDW). As a result, the concept of EDW should be expanded to become more inclusive of a wider range of possible spatial warming distributions. The purpose of this paper is not to provide exact estimations of warming, but rather to provide hypothetical spatial warming patterns, based on logical predictions of changes to temperature inversion strength, which may not directly follow the distribution projected through EDW.
Elevation plays a crucial role in modulating the spatiotemporal distributions of climatic variables in mountainous regions, which affects water and energy balances, among which reference evapotranspiration (ET0) is a key hydrological indicator. However, the response of ET0 to climate change with elevation continues to be poorly understood, especially in the Tibetan Plateau (TP) which has elevation variations of more than 4,000m. The spatiotemporal variations of ET0 with elevation were investigated using long-term (1960-2017) meteorological observations from 82 stations on the TP. The results suggest that the average annual ET0 showed an insignificant increasing trend. A significant negative correlation between ET0 and elevation was found (p<.01). The positive trends of ET0 decreased with elevation, whereas the negative trends of ET0 increased significantly with elevation (p<.05). The magnitude of trends of ET0 becomes smaller at higher-elevation stations. Sensitivity analysis indicated that ET0 was most sensitive to shortwave radiation (R-s). Moreover, the sensitivities of temperature (T) and wind speed (U) significantly decreased with elevation, whereas those of R-s and vapour pressure deficit (VPD) increased slightly with elevation. The contribution and path analyse indicated that increasing VPD was the dominant contributor to the increase in ET0. The effect of elevation on ET0 variation mainly depended on the tradeoff between the contributions of U and VPD. U was the largest contributing factor for the change in ET0 below 2,500m, whereas VPD was the primary contributor to the increase in ET0 above 2,500m. This study provides insights into the response of ET0 to climate change with elevation on the TP, which is of great significance to hydrometeorological processes in high-altitude regions.
AimGlobally, forests at the alpine-treeline ecotone (ATE) are considered sensitive to warming temperatures; however, responses to recent climate change show high variability and many underlying processes remain unclear. This study aims to provide further insight into possible ATE forest responses to climate change by examining spatiotemporal patterns in recent tree regeneration and growth responses to climate across treeline forms.LocationThis study is situated at the ATE in the Rocky Mountain and Columbia Mountain ranges in central British Columbia, Canada.TaxonGymnosperms - subalpine fir (Abies lasiocarpa Hooker (Nutall)).MethodsWe collected tree and stand data from 48 plots across five study sites. Plots were distributed across three treeline stand types: (i) islands; (ii) abrupt; and (iii) fringes of regeneration adjacent to tree islands. We used a dendrochronological approach to analyse the ages of recently established trees in fringe stand types, detect long-term trends in annual tree growth and quantify climate-growth relationships.ResultsSeedling recruitment adjacent to tree islands occurred over a period of approximately 40 years (1960-2000), with two regeneration pulses in the late 1970s and 1980s. Abrupt and fringe trees showed a similar age structure and annual radial growth has increased in most trees over the past 30 years. Across the study region and stand types, summer temperature has the strongest influence on radial growth. Over the past 70 years, growth in tree islands has become increasingly correlated with growing season temperature variables.Main ConclusionsForest growth and structure have changed in coherent spatial and temporal patterns over recent decades at the ATE in central BC. Projections for sustained warming in this region will likely result in increased tree growth and potential continued expansion of forests into untreed areas below the treeline. These changes will have implications for hydrological regimes, wildlife habitat and carbon sequestration.
Understanding temperature variability especially elevation dependent warming (EDW) in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt, degradation of soils, and active layer thickness. EDW means that temperature is warming faster with the increase of altitude. In this study, we used observed temperature data during 1979-2017 from 23 meteorological stations in the Qilian Mountains (QLM) to analyze temperature trend with Mann-Kendall (MK) test and Sen's slope approach. Results showed that the warming trends for the annual temperature followed the order of T_min > T_mean > T_max and with a shift both occurred in 1997. Spring and summer temperature have a higher increasing trend than that in autumn and winter. T_mean shifts occurred in 1996 for spring and summer, in 1997 for autumn and winter. T_max shifts occurred in 1997 for spring and 1996 for summer. T_min shifts occurred in 1997 for spring, summer and winter as well as in 1999 for autumn. Annual mean diurnal temperature range (DTR) shows a significant decreasing trend (-0.18 degrees C/10a) from 1979 to 2017. Summer mean DTR shows a significant decreasing trend (-0.26 degrees C/10a) from 1979 to 2017 with a shift occurred in 2010. After removing longitude and latitude factors, we can learn that the warming enhancement rate of average annual temperature is 0.0673 degrees C/km/10a, indicating that the temperature warming trend is accelerating with the continuous increase of altitude. The increase rate of elevation temperature is 0.0371 degrees C/km/10a in spring, 0.0457 degrees C/km/10a in summer, 0.0707 degrees C/km/10a in autumn, and 0.0606 degrees C/km/10a in winter, which indicates that there is a clear EDW in the QLM. The main causes of warming in the Qilian Mountains are human activities, cloudiness, ice-snow feedback and El Nino phenomenon.
Many studies have focused on elevation-dependent warming (EDW) across high mountains, but few studies have examined both EDW and LDW (latitude-dependent warming) on Antarctic warming. This study analyzed the Antarctic amplification (AnA) with respect to EDW and LDW under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 from Coupled Model Intercomparison Project Phase 6 (CMIP6) during the period 2015-2100. The results show that the AnA appears under all socioeconomic scenarios, and the greatest signal appears in austral autumn. In the future, Antarctic warming is not only elevation-dependent, but also latitude-dependent. Generally, positive EDW of mean temperature (T-mean), maximum temperature (T-max) and minimum temperature (T-min) appear in the range of 1.0-4.5 km, and the corresponding altitudinal amplification trends are 0.012/0.012/0.011 (SSP1-2.6)- 0.064/0.065/0.053 (SSP5-8.5) degrees C decade(-1)center dot km(-1). Antarctic EDW demonstrates seasonal differences, and is strong in summer and autumn and weak in winter under SSP3-7.0 and SSP5-8.5. For T(mea)n, T-max and T-min, the feature of LDW is varies in different latitude ranges, and also shows seasonal differences. The strongest LDW signal appears in autumn, and the warming rate increases with increasing latitude at 64-79 degrees S under SSP1-2.6. The similar phenomenon can be observed at 68-87 degrees S in the other cases. Moreover, the latitude component contributes more to the warming of T-mean and T-max relative to the corresponding altitude component, which may relates to the much larger range of latitude (similar to 2600 km) than altitude (similar to 4.5 km) over Antarctica, while the EDW contributes more warming than LDW in the changes in T-min in austral summer. Moreover, surface downwelling longwave radiation, water vapor and latent heat flux are the potential factors influencing Antarctic EDW, and the variation in surface downwelling longwave radiation can also be considered as an important influencing factor for Antarctic LDW. Our results provide preliminary insights into EDW and LDW in Antarctica.
Freeze-thaw desertification (FTD) as a specific land degeneration form in high elevations is intensifying in alpine meadows due to climate change and human activities. It causes the formation of desertified patches (DPs), and further aggravating alpine meadow patchiness and impairing ecosystem functions such as water conservation, carbon sequestration and biodiversity maintenance. However, the impacts of FTD on the patch pattern, soil properties, and vegetation succession of alpine meadows and the elevation differences of these impacts still lack a comprehensive understanding. Here, we analyzed the patch patterns, soil and vegetation characteristics in typical FTD regions in the Qilian Mountains using aerial photography and field investigations along an elevation gradient. Our results indicated that, as elevation increases, the fragmentation of alpine meadows caused by FTD intensified, which was related to the elevational differentiation of freeze-thaw cycles and soil water holding capacity. DPs not only led to a decrease in soil water holding capacity and an increase in bulk density, but also caused surface soil sandification. Among them, the weakening of soil water holding capacity by DPs was particularly serious in high elevations. Additionally, the degradation of the original vegetation species com-munities in DPs caused the significant loss of vegetation cover, biomass and soil organic carbon, and made DPs exhibit certain alpine desert steppe characteristics, whereas the vegetation diversity of DPs had an increase at low elevations. Our findings highlight the significant impacts of FTD on the water conservation function and vegetation diversity of alpine meadows, and it is necessary to apply ecological protection measures to control DPs expansion such as fenced grazing, biological control and land cover (crop, vegetation, degradable plastic mulch, etc.).
The Qinghai-Tibetan Plateau (Q-TP hereafter) has experienced dramatic warming in recent decades, resulting in severe effects on the ecosystems and downstream. However, none of previous studies investigated elevationdependency temperature trend with the high resolution over the long-term period. Based on monthly temperature dataset with 0.1 developed by generative adversarial network, elevation-dependency temperature trend over the Q-TP and 5 climate zones (humid, humid-semihumid, semihumid, semiarid, arid region) during 1901-1946, 1946-1965, 1965-1997 and 1997-2015 are investigated. Snow cover (SNC), high cloud cover (HCC), middle cloud cover (MCC), specific humidity (SHUM) and soil moisture content (SOILM) are introduced to analyze possible mechanism. There are 4 cases of elevation-dependency temperature trend, which are positive/negative elevation-dependency warming (EDW+/EDW-) and cooling (EDC+/EDC-). These patterns (EDW+, EDW-, EDC+ and EDC-) are identified as warming/cooling trends that become stronger/weaker with increasing elevation. EDW- signal is found during 1901-1946 due to the influence of SOILM. The most prominent EDW- signal occurs over the arid region. EDC+/- is presented during 1946-1965 under the dominance of SHUM and SOILM. The stronger EDC signal is shown over the arid and semiarid region than over the humidsemihumid region. The subtle EDW+ signal is shown over the semihumid, semiarid and arid regions during 1965-1997 when SOILM has a relatively large contribution to temperature trend. The robust EDW+ signal is exhibited from 1997 to 2015 when SNC plays a vital role in regulating the temperature change. There is a more significant EDW+ over the humid, humid-semihumid, and semihumid regions than that over the semiarid and arid regions during this period. Above all, SNC, SHUM and SOILM are found to be the primary contributors to elevation-dependency temperature trend. SOILM and SHUM are associated with hydrological effects and control temperature variations over the Q-TP during 1901-1997. SNC is related to snow/ice-albedo feedback and dominates temperature variations over the Q-TP during 1997-2015.
Climate change has significantly impacted vegetation phenology across the globe with vegetation experiencing an advance in the spring green-up phases and a delay in fall senescence. However, some studies from high latitudes and high elevations have instead shown delayed spring phenology, owing to a lack of chilling fulfillment and altered snow cover and photoperiods. Here we use the MODIS satellite-derived view-angle corrected surface reflectance data (MCD43A4) to document the four phenological phases in the high elevations of the Sikkim Himalaya and compared the phenological trends between below-treeline zones and above-treeline zones. This analysis of remotely sensed data for the study period (2001-2017) reveals considerable shifts in the phenology of the Sikkim Himalaya. Advances in the spring start of the season phase (SOS) were more pronounced than delays in the dates for maturity (MAT), senescence (EOS), and advanced dormancy (DOR). The SOS significantly advanced by 21.3 days while the MAT and EOS were delayed by 15.7 days and 6.5 days respectively over the 17-year study period. The DOR showed an advance of 8.2 days over the study period. The region below the treeline showed more pronounced shifts in phenology with respect to an advanced SOS and a delayed EOS and DOR that above treeline. The MAT, however, showed a greater delay in the zone above the treeline than below. Lastly, unlike other studies from high elevations, there is no indication that winter chilling requirements are driving the spring phenology in this region. We discuss four possible explanations for why vegetation phenology in the high elevations of the Eastern Himalaya may exhibit trends independent of chilling requirements and soil moisture due to mediation by snow cover.
In cold and high-elevation mountainous catchments, climate and landscape vary with elevation, which leads to elevational variability in runoff. The short-term variation and long-term change of climate would temporally and permanently alter the conditions of frozen ground and runoff characteristics at different elevation zones. In this study, a conceptually hydrological model is developed to investigate the responses of soil freeze-thaw and runoff processes to climate change from 1979 to 2013 in a glacierized catchment in the Tibetan Plateau (TP). Results show that our model can accurately reproduce the observed daily streamflow. In addition to rainfall (63.8%), meltwater from glacier (22.2%) and snowpack (14.0%) are also key contributors to streamflow, especially at high elevations. As temperature declines with rising of elevation, the elevation-runoff relationship depicts a convex formation with a runoff peak at the elevation of -5800 m. Below 5800 m, surface flow increases towards high elevations accompanied by the increase of glacier coverage, while groundwater flow reduces because the enlarged frozen ground areas inhibit the percolation of the infiltrated water. Above 5800 m, the runoff declines sharply as the ground changes to a perennially freezing condition. The long-term climate warming during 1979 - 2013 significantly increases annual runoff with a rate of 12.2 mm/10a. The increment in streamflow is primarily attributed to an increase in surface flow in the summer season when glacier meltwater increases at high elevations. Whereas the permafrost degradation enhances infiltrated water percolation and hence, groundwater flow in the low elevations and the low flow periods. Although climate warming benefits the local water resources availability during the historical periods, streamflow could be substantially decreased if the glacier vanished, which threatens the sustainability of the water tower over TP.
To explore the spatio-temporal dynamics and mechanisms underlying vegetation cover in Haryana State, India, and implications thereof, we obtained MODIS EVI imagery together with CHIRPS rainfall and MODIS LST at annual, seasonal and monthly scales for the period spanning 2000 to 2022. Additionally, MODIS Potential Evapotranspiration (PET), Ground Water Storage (GWS), Soil Moisture (SM) and nighttime light datasets were compiled to explore their spatial relationships with vegetation and other selected environmental parameters. Non-parametric statistics were applied to estimate the magnitude of trends, along with correlation and residual trend analysis to quantify the relative influence of Climate Change (CC) and Human Activities (HA) on vegetation dynamics using Google Earth Engine algorithms. The study reveals regional contrasts in trends that are evidently related to elevation. An annual increasing trend in rainfall (21.3 mm/decade, p < 0.05), together with augmented vegetation cover and slightly cooler (-0.07 degrees C/decade) LST is revealed in the high-elevation areas. Meanwhile, LST in the plain regions exhibit a warming trend (0.02 degrees C/decade) and decreased in vegetation and rainfall, accompanied by substantial reductions in GWS and SM related to increased PET. Linear regression demonstrates a strongly significant relationship between rainfall and EVI (R-2 = 0.92), although a negative relationship is apparent between LST and vegetation (R-2 = -0.83). Additionally, increased LST in the lowelevation parts of the study area impacted PET (R-2 = 0.87), which triggered EVI loss (R2 = 0.93). Moreover, increased HA resulted in losses of 25.5 mm GSW and 1.5 mm SM annually. The relative contributions of CC and HA are shown to vary with elevation. At higher elevations, CC and HA contribute respectively 85% and 15% to the increase in EVI. However, at lower elevations, reduced EVI is largely (79%) due to human activities. This needs to be considered in managing the future of vulnerable socio-ecological systems in the state of Haryana.