Increase of surface temperatures has long been recognized as an unequivocal response to radiative forcing and one of the most important implications for global warming. However, it remains unclear whether the variation of ground surface temperature (GST) and soil temperatures is consistent with simultaneous changes of the near-surface air and land (or skin) surface temperatures (T-a and LST). In this study, a seven-year continuous observation of GST, T-a, and surface water and heat exchange was carried out at an elevational permafrost site at Chalaping, northeastern Qinghai-Tibet Plateau. Results showed a distinct retarding of warming on the ground surface and subsurface under the presence of dense vegetation and moist peat substrates. Mean annual T-a and LST increased at noteworthy rates of 0.22 and 0.32 degrees C/a, respectively, while mean annual GST increased only at a rate of 0.057 degrees C/a. No obvious trends were detected for the four radiation budgets except the soil heat flux (G), which significantly increased at a rate of 0.29 W.m(-2).a(-1), presumably inducing the melting of ground ice and resulted in much higher moisture content through the summers of 2015 and 2016 than preceding years and subsequent 2017 at the depths between 80 and 120 cm. However, no noticeable immediate variations of soil temperatures occurred owing to the large latent heat effect (thermal inertia) and the extending zero-curtain period. We suggest that a better protected eco-environment, particularly the surface vegetation, helps preserving the underlying permafrost, and thus to mitigates the potential degradation of elevational permafrost on the Qinghai-Tibet Plateau.
Surface temperature is critical for the simulation of climate change impacts on the ecology, environment, and particularly permafrost in the cryosphere. Virtually, surface temperatures are different in the near-surface air temperature (T-a) measured at a screen-height of 1.5-2 m, the land surface temperature (LST) on the top canopy layer, and the ground surface temperature (GST) 0-5 cm beneath the surface cover. However, not enough attention has been concentrated on the difference in these surface temperatures. This study aims at quantifying the distinction of surface temperatures by the comparisons and numerical simulations of observational field data collected in a discontinuous permafrost region on the northeastern Qinghai-Tibet Plateau (QTP). We compared the hourly, seasonal and yearly differences between T omega, IST, GST, and ground temperatures, as well as the freezing and thawing indices, the N-factors, and the surface and thermal offsets derived from these temperatures. The results showed that the peak hourly LST was reached earliest, closely followed by the hourly T-a. Mean annual LST (MALST) was moderately comparable to mean annual T-a (MAAT), and both were lower than mean annual GST (MAGST). Surface offsets (MAGST-MAAT) were all within 3.5 degrees C, which are somewhat consistent with other parts of the QTP but smaller than those in the Arctic and Subarctic regions with dense vegetation and thick, long-duration snow cover. Thermal offsets, the mean annual differences between the ground surface and the permafrost surface, were within -0.3 degrees C, and one site was even reversed, which may be relevant to equally thawed to frozen thermal conductivities of the soils. Even with identical T-a (comparable to MAAT of -3.27 and -3.17 degrees C), the freezing and thawing processes of the active layer were distinctly different, due to the complex influence of surface characteristics and soil, textures. Furthermore, we employed the Geophysical Institute Permafrost Lab (GIPL) model to numerically simulate the dynamics of ground temperature driven by T-a, LST, and GST, respectively. Simulated results demonstrated that GST was a reliable driving indicator for the thermal regime of frozen ground, even if no thermal effects of surface characteristics were taken into account. However, great biases of mean annual ground temperatures, being as large as 3 degrees C, were induced on the basis of simulations with LST and T-a when the thermal effect of surface characteristics was neglected. We conclude that quantitative calculation of the thermal effect of surface characteristics on GST is indispensable for the permafrost simulations based on the T-a datasets and the LST products-that derived from thermal infrared remote sensing.