Arsenic (As) in soil, such as mining waste, is a concern for communities with legacy contamination. While the chronic health effects of As exposure through drinking water are well documented, the association between As in soil and population-wide health impacts is complex, involving factors like soil accessibility, soil properties, and exposure modes. This review summarizes evidence of associations between As in soil and human health, as well as biomarker and bioaccessibility evidence of exposure pathways. Fourteen studies were included in the final analysis. Reviewed studies reported associations between As in soil and birth outcomes, neurological effects, DNA damage, and cancer. Some of these health outcomes are not known to be linked to As in drinking water and were reported over a range of soil concentrations, indicating inconsistencies. Higher soil As concentrations are associated with higher As in human biospecimens, suggesting direct and indirect soil ingestion as primary exposure pathways. The subpopulations more likely to be exposed include younger children and those involved in soil-based activities. Future research should focus on standardized epidemiological studies, longitudinal studies, soil exposure and mitigating factors, combined exposure biomarker studies, the behavior of the different As species, soil dose related to bioavailability/bioaccessibility, and effects with other elements.
A bacterial wilt disease (R. solanacearum) severely damages potato crops. The pathogen infects several crops in various agroclimatic areas, and it has a broad pathogenic diversity. Six phylotypes, twenty-three sequevars, five races, and six biovars have been identified to indicate the pathogenic diversity of the pathogen. Twenty-eight isolates of Phylotype II were separated into seven classes and identified 97.06% diversity. It survives in the soil for a long time. Temperature and soil moisture, affected the infection, growth, and epidemics of the pathogen. In the last three decades, scholars have reported Mondial, CIP385312-2, Cruza 148, and CIP388285-14 resistant clones and cultivars. Five quantitative trait loci responsible for resistance were identified on different potato chromosomes. LYZ-C resistance gene and the receptor kinase gene CLAVATA 1 were used to develop potato resistance. For potato resistance, a clustered regularly interspaced short palindromic repeat has been used since bacteria do not have Ribonucleic acid interference. Biochar, compost, and bio-organic fertilizer cultural practices are important to control the disease. It has been stated that bacteria exceed fungus as a biological control. Moreover, new or unusual biological controls such as Enterobacter sp., Pseudomonas sp., and Paenibacillus sp have been suggested. Several studies showed the effects of cultural and physical practices on other soil-borne diseases, however not on the potato bacterial wilt disease. Resistant potato clones against bacterial wilt disease are not available in developing countries. Then, the current review was proposed to assess various findings available on potato bacterial wilt pathogenic variability and management practices.
Damping-off disease in chili (Capsicum annum L.) cultivation is a significant global issue, severely affecting seeds, seedlings, and young plants, regardless of the location of cultivation, whether in greenhouses or open fields. Despite chili being a widely popular vegetable used in various cuisines globally, farmers face challenges in meeting the growing demand due to the extensive damage caused by this disease, ranging from 20 to 85%. The shelf life and quality of mature pods are also severely affected. Damping-off disease is mainly caused by soil-borne fungus from the Pythium species, with additional contributions from Phytophthora, Fusarium, and Rhizoctonia species. These pathogens' adaptability to diverse environmental conditions and resistance to synthetic fungicides make controlling damping-off on a commercial scale challenging. However, integrated disease management has shown promising results as a remedial approach. In this review, we discuss the current state of chili diseases, the nature of the pathogens causing damping-off, the epidemiology of the disease, and various control mechanisms. In this review, we broadly discuss the current state of chili diseases, the nature of the pathogens causing damping-off, the epidemiology of the disease, and various control mechanisms. Furthermore, we highlight the importance and efficacy of integrated disease management techniques, along with future prospects in unexplored areas, such as host-pathogen interaction and sustainable disease control measures. The information in this review aims to assist chili growers in understanding the epidemiology and management of damping-off in chili cultivation.
Peanut smut (Thecaphora frezzii) is one of the most important peanut diseases in Argentinian peanut production. This monocyclic soil-borne pathogen transforms kernels into spore masses. Spore liberation from broken infected pods during the harvest process is supposed to be the main mechanism of inoculum spread, with the subsequent spread among fields increasing the soil inoculum for future peanut cropping seasons. However, we are unaware of any published study on the role of wind (in terms of speed and direction) in how far smut spores spread. Therefore, we conducted an observational study where passive spore traps were distributed at harvest around six fields placed at 100, 200, 300, and 400 m away from each field's centroid in four cardinal directions. Three time slices were sampled: from the beginning of harvest to 90-, 180-, and 270-minutes continuously during harvest. Wind speed and direction were recorded at each trap. A generalized additive model was fitted to describe the spore spread. Modeling the dispersal shows that the spread is influenced by wind speed and the smut severely damaged pods incidence present at the harvested field. Additionally, spore size and proportion of different smut spore types were assessed (from a single unit spore to a 5-multinuclear propagule). No statistical differences were observed in the proportion of the spore types trapped. However, fewer spores were trapped at distances farther from the harvested area. This work led us to understand a fundamental component of the peanut smut cycle and epidemiology, which is to design management strategies. For example, avoiding harvest on windy days (typically >10 km h(-1)) to prevent the distant spread of inoculum for subsequent seasons or predicting the risk surrounding an infected field.
Background: Leptospirosis is a significant zoonotic infection caused by Leptospira spirochetes, which are distributed globally. Infection typically occurs through exposure to water or soil contaminated by the urine of mammals, including dogs, cattle, pigs, or rodents. Objectives: The objective of this study was to elucidate the epidemiological, clinical, and laboratory characteristics of leptospirosis cases in Turkey. Methods: In a retrospective review, we analyzed the clinical and laboratory data of all individuals under 18 years diagnosed with leptospirosis at a secondary care center in Southeast Turkey from the beginning of 2020 to the end of 2O22. Results: Over the two-year period, 36 confirmed cases of leptospirosis in individuals under 18 were identified. All patients had been engaged in activities at wells in cornfields, assisting their families with irrigation or related to well operations. Of these patients, 3 (8%) resided in urban areas, while 33 (92%) lived in rural settings. None required intensive care, and there were no fatalities reported. The most common symptoms at presentation were fatigue (83%), fever (75%), and nausea/vomiting (75%). Laboratory tests revealed that all patients had positive C-reactive protein (CRP) levels, with a significant portion (61%) showing Conclusions: In conclusion, leptospirosis should be considered by clinicians when evaluating patients, especially those with risk factors like occupational exposure. Prompt testing for the disease is advisable under these circumstances.