Liquid crystal monomers (LCMs) are emerging pollutants that have attracted attention recently due to their unique chemical properties and wide applications. However, in-depth research on LCMs' potential risks to soil health remains blank. Therefore, 107 LCMs and nine soil health characterization proteins/enzymes were selected as research objects in this study. A grading evaluation system for soil health toxicological effect indicators under LCMs exposure was constructed from five dimensions (i.e., soil animals, soil plants, soil microorganisms, soil carbon, nitrogen and phosphorus cycles, and human health) by molecular docking and molecular dynamics simulation methods. Priority control lists for soil health toxicological effects under LCMs exposure were developed based on the proposed evaluation system, with rationality verified through non-bonded interaction, 2DQSAR and Meta-analysis. Results showed that 32, 56 and 19 LCMs presented unacceptable, potential, and acceptable soil health risks, respectively. The oxidative damage of LCMs to plant leaves, the toxicity to earthworm growth and development, and its effects on key enzymes of the soil nitrogen cycle were suggested to be the priority-attention indicators. This is the first study that provides theoretical support for revealing the toxicological effects of LCM exposure on soil health and relevant pollution control strategies.
The mining activities in arid regions have resulted in significant ecological environmental issues, exacerbating the already challenging ecological conditions and leading to severe ecosystem damage. Merely relying on natural recovery processes proves inadequate, thus necessitating the implementation of artificial restoration measures to facilitate ecosystem recovery in these arid mining regions. However, it is difficult to scientifically answer the questions of how artificial restoration can be effectively combined with natural recovery, and to what extent can artificial assistance can define the beginning of natural recovery in ecosystems. To address this issue, this study proposed a stepwise ecological restoration model for arid mining regions. The model delineated the ecological restoration process in arid mining regions into three phases: artificial reconstruction, auxiliary ecological restoration, and natural recovery, and constructed an evaluation index system of the stepwise ecological restoration process. Taking an example of a mining ecological restoration in Aksu, Xinjiang, this study examined the evaluation effects of the stepwise ecological restoration model on ecological restoration projects in arid mining regions. The research showed that adopting the stepwise ecological restoration model in arid mining regions can achieve scientific and moderate artificial restoration, better clarify ecological restoration goals, and facilitate the implementation of ecological restoration projects.