共检索到 4

It is necessary to fully understand the settlement of high-speed railway subgrade induced by train loading to ensure the operation safety of high-speed trains. A 1:7 reduced-scale model test was designed to investigate the settlement of subgrade under two loading methods: continuous and intermittent cyclic loading. The testing results show that an increase in load amplitude enhances the load transmission effect to the bottom of the subgrade. After 105 cycles of continuous loading, the cumulative settlement of the subgrade at depth of 0, 20, and 40 cm directly below the loading range is 3.247, 1.05, and 0.09 mm, respectively, showing significant decreases with depth. A significant rebound can be observed when the applied load is removed during the intermittent loading process, which is quite different from the results under condition of continuous loading. Thus, the intermittent effect of train load on the cumulative deformation of the subgrade cannot be ignored. In addition, to better predict the cumulative settlement of the subgrade, a prediction method based on the state evolution model was proposed and used to quantitatively analyze the testing observations. Based on the state evolution model, the predicted cumulative strains at depths of 0, 20, and 40 cm were 1.218%, 0.457%, and 0.047%, respectively, which are in good agreement with the experimental results of 1.099%, 0.48%, and 0.045%, indicating that the theoretical model can accurately predict the cumulative strain of the subgrade caused by train load. Additionally, the parameters of the state evolution model can be updated in a timely manner by applying the updated monitoring data to enhance the prediction accuracy. The current work provides an alternative method for predicting the long-term cumulative settlement of subgrade induced by the train loading, and also a basis for the optimization of high-speed railway subgrade design.

期刊论文 2025-06-01 DOI: 10.1061/IJGNAI.GMENG-10143 ISSN: 1532-3641

The freeze-thaw damage of cementitious coarse grained fillings (CCGFs) significantly affects the firmness, stability, and durability of high-speed railway subgrades. It is favorable to employ geopolymer binders to improve the engineering performance of coarse grained fillings (CGFs), further ensure the safety of high-speed railway subgrades in cold regions due to their excellent mechanical and environmental-friendly performances. This study conducted a series of freeze-thaw and mechanical tests on geopolymer stabilized coarse grained fillings (GSCGFs). The influence of gradation, compaction degree, and freeze-thaw cycles on the integrity, strength, and stiffness of GSCGFs was investigated. The evolution law of their freeze-thaw damage was discussed quantitatively based on an improved damage factor. The results show that the mass loss rate of Group B GSCGFs with a fine-grained particle content of less than 15% was lower than that of Group A GSCGFs with a fine particle content between 15% and 30% overall. When other conditions remain unchanged, the mass loss rate of GSCGFs decreased with the increase of compaction degree but increased nonlinearly with the freeze-thaw cycles. The strength and stiffness of GSCGFs decrease nonlinearly with the freeze-thaw cycles and presented a first fast and then slow-down change trend, their stiffness evolution at different compaction degrees revealed a big difference due to the weakening bite effect and enhancing overhead structure among rock blocks. The strength reduction of Group A GSCGFs was less than that of Group B under the high compaction degree. The stiffness deterioration of Group A GSCGFs was about twice that of Group B. There seemed to be no absolute correlation that the strength of GSCGFs was positively correlated with their stiffness. By building an exponential relationship between the compressive strength of GSCGFs and the freeze-thaw cycles that followed the findings of previous several studies, an improved exponential damage evaluation model was proposed to represent the performance degradation of GSCGFs. The outcomes of this study can provide theoretical support for understanding the physical and mechanical behaviors of GSCGFs and applying them in engineering practices.

期刊论文 2025-04-09 DOI: 10.1038/s41598-025-94908-z ISSN: 2045-2322

Calcareous sand, a distinctive granular material in geotechnical engineering, has garnered significant interest due to its irregular particle shapes, internal porosity, susceptibility to breakage, and critical role in island and offshore construction. Despite its importance, the influence of loading paths on its mechanical behavior and particle breakage remains underexplored. This study addresses this gap through an extensive experimental program, including isotropic consolidation and both drained and undrained triaxial compression tests, systematically varying loading paths and initial densities. The findings demonstrate that the strength and deformation characteristics of calcareous sand are profoundly affected by loading paths, initial densities, and particle breakage. A novel breakage evolution model is proposed, effectively capturing gradation changes under diverse testing conditions. Furthermore, the study quantifies the impacts of these factors on critical mechanical properties, including peak friction angle, dilatancy, secant modulus, and critical state parameters. These results provide a robust theoretical foundation for the development of constitutive models that integrate particle breakage and initial density effects. The insights are essential for optimizing geotechnical designs, enhancing stability, and improving infrastructure reliability in coastal and marine environments, particularly in island and reef development projects.

期刊论文 2025-02-21 DOI: 10.1016/j.enggeo.2025.107908 ISSN: 0013-7952

Expansive soil is a special soil type that undergoes volume expansion during hygroscopicity and volume contraction during dehumidification. In this study, the effects of rainfall-evaporation cycles on the microscopic pores and cracks of expansive soils under different rainfall intensities were analyzed by simulating light rainfall, medium rainfall, and high-temperature drought environments using nuclear magnetic resonance (NMR) technology and image processing methods. The results showed that the micropores and small medium pores of the expanded soil gradually evolved into macropores during the cycling process, especially under stronger rainfall conditions. In addition, as the number of cycles increased, the expanded soil showed irrecoverable pore changes, which ultimately led to the scattering damage of the soil. By processing the surface crack images of expansive soils, the process of crack development was categorized into four stages, and it was found that the evaporation cycle of medium rainfall intensity caused the main cracks of expansive soils to develop more rapidly. A quantitative relationship model between the average crack width and the number of cycles as well as porosity was constructed, and the regression coefficient of determination R2 reached 0.98, 0.96, and 0.84, respectively. This study simulates the effects of real rainfall conditions on expansive soils and investigates the mechanism and evolution of cracks in expansive soils, which is of great theoretical and practical significance.

期刊论文 2024-09-01 DOI: 10.3390/su16177617
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页