River riparian basins play a crucial role in mitigating greenhouse gas (GHG) emissions through carbon sequestration and nitrogen sinks. However, increased ecological stresses led to the release of CO2, CH4 and N2O. This study aimed to investigate how extreme temperatures, water levels, moisture content, land use changes and soil composition influence GHG emissions in the riparian corridor and to recommend mitigation techniques. It was carried out at the Yangtze River Riparian zone, China, using soil column testing. It used soil column testing. The results showed that extreme temperatures caused the highest emissions of CO2 (29-45%), CH4 (24-43%) and N2O (27-33%). This was due to increased soil temperatures and accelerated organic carbon/nitrogen decomposition. Conversely, control and wet-dry cycles absorbed CO2 (1-3%), CH4 (3-10%) and N2O (1-21%) by improving soil aeration, increased oxygen availability, soil structure, stable water table and low temperature change. Grasses in riparian areas also improved carbon sinks. Highest water levels had lowest gas concentrations and emissions due to low oxygen level. Adaptive wet-dry cycles, grass cover and better water table management can restore riparian areas, maintain soil moisture, balance soil carbon/nitrogen levels and mitigate climate change by improving soil quality. Dissolved organic matter fluorescence (DOMFluor) components are essential for soil carbon dynamics, aquatic biome safety, nutrient cycling and ecological balance in riparian zones. The study recommends implementing restoration practices, managing soil moisture, afforestation, regulating temperature and monitoring water tables to mitigate GHG emissions and address climate change. Future policies should focus on promoting resilient land use and ecosystems.
Irrigation has distinct impacts on extreme temperatures. Due to the carryover effect of soil moisture into other seasons, temperature impacts of irrigation are not limited to irrigated seasons. Focusing on the North China Plain, where irrigation occurs in both spring (March-April-May) and summer (June-July-August), with a higher proportion of irrigation water applied during spring, we investigate the impact of spring irrigation on summer extreme heat events. Based on partial correlation analysis of data products, we find positive correlations between spring and summer soil moisture, suggesting that spring irrigation-induced water surplus persists into the following summer and affects regional climate by impacting surface energy partitioning. Regional climate simulations confirm cross-seasonal climatic effects and show that spring irrigation reduces the frequency and intensity of summer extreme heat events by approximately -2.5 days and -0.29 degrees C, respectively. Our results highlight the importance of the cross-seasonal climatic effect of irrigation in mitigating climate extremes. Irrigation exerts a stronger impact on extreme temperatures than on mean temperatures. The North China Plain (NCP) is a typical winter wheat-summer maize rotation planting area, where irrigation is necessary in both spring and summer, but with a higher proportion of irrigation water applied during spring. The climatic effects of spring and summer irrigation in the NCP are intertwined due to the carryover effects of soil moisture. Recently, the climatic effect of irrigation in the NCP has been extensively explored, whereas the cross-seasonal effects of irrigation on summer extreme heat events have never been quantified. In this study, we employ the Weather Research and Forecasting model coupled with a demand-driven irrigation algorithm to discern the effects of spring and/or summer irrigation on summer extreme heat events by means of idealized climate simulations. The results show that spring and summer irrigation significantly reduces the frequency and intensity of summer extreme heat events by approximately -6.5 days and -1.0 degrees C, of which spring irrigation contributes about 38% and 30%, respectively. Our findings underline the importance of irrigation-induced climate impacts in mitigating extreme heat events and emphasize that climate change adaptation planning in terms of irrigation must account for cross-seasonal climatic effects. Effect of multi-seasonal irrigation on summer extreme heat events is investigated Spring irrigation is beneficial for reducing summer extreme heat events Irrigation modulates the relationship between spring and summer soil moisture