Cellulosic paper-based materials are considered to be one of the most potential candidates to replace non-degradable plastics, but the strong affinity between cellulose and water causes cellulosic paper-based materials to face the dilemma of poor water resistance and weak wet strength. Herein, a fatty acid-based hydrophobic modifier (SAT) is constructed by amidation reaction between (3-aminopropyl)triethoxysilane and stearic acid. The ethoxy groups in the structure of SAT can be covalently crosslinked with the hydroxyl groups of cellulose through hydrolytic condensation, thereby making cellulose paper-based materials exhibit excellent properties including (1) high mechanical properties (the dry-state tensile strength has doubled from 22.3 to 46.8 MPa, while the wet-state tensile strength has surged from 0.47 to 20.0 MPa), (2) long-term stability (mechanical properties remain almost unchanged after 40 days storage at 80% RH), (3) superb water resistance (soaked in water at 25 degrees C for 1 h, water absorption drops from 247.0% to 56.5%; at 90 degrees C, it falls from 290.5% to 82.9%), (4) eco-friendly (it can be completely degraded after being buried in soil for 90 days, or it can be recycled and reused). The aforementioned impressive performance positions SAT-modified cellulose paper as a formidable contender for plastic replacement in packaging applications.Highlights Fatty acid-based modifier (SAT) can modify cellulose by chemical bond. The low polarity of long-chain alkanes enables cellulose's hydrophobicity. Covalent crosslinking of SAT with cellulose ensures superb strength SAT paper is an unrivaled combination of degradability and recycling.
Permafrost thaw has the potential to release ancient particulate and dissolved organic matter that had been stored for thousands of years. Previous studies have shown that dissolved organic matter from permafrost is very labile and can be used by heterotrophic microbes close to the thaw area. However, it is unknown if ancient particulate organic matter can also be utilized. This study aims to investigate whether arctic microbial communities (bacteria and Archaea) incorporate ancient organic matter potentially released from thawing permafrost into their biomass. We compare and contrast the radiocarbon signatures of microbial lipids and higher plant biomarkers (representing terrestrial organic matter) from five soil profiles and seven deltaic lake sediment cores from the Mackenzie River drainage basin, Arctic Canada. In the surface soils, modern to post-modern short-chain fatty acids (SCFA) ages indicate in situ microbial production, with differential rates of organic carbon (OC) cycling depending on soil moisture. In contrast, SCFA in deeper soils display millennial ages, which likely represent the microbial necromass preserved through mineral association. In deltaic lakes that are disconnected from the river, generally old SCFA suggests the uptake of pre-aged OC by bacteria. In perennially connected lakes, pre-aged SCFA could originate from in situ microbial uptake of old OC or from the Mackenzie River. Higher plant-derived long-chain fatty acids (LCFA) present older radiocarbon ages, reflecting mineral stabilization during either pre-aging in soils (for high closure lakes) or riverine transport (for no and low closure lakes). Archaeal lipids are younger than SCFA and LCFA in high closure lakes, and older in low and no closure lakes, mirroring bulk radiocarbon signatures due to their heterotrophic production. These radiocarbon signatures of bacterial biomarker lipids may therefore reflect microbial incorporation of ancient OC (e.g., derived from permafrost thaw) or exceptional preservation (e.g., through mineral stabilization). Hence, even in relatively high OC environments such as arctic aquatic ecosystems, microbes can rely on ancient OC for their growth.
Fungal diseases caused by Fusarium spp. significantly threaten food security and sustainable agriculture. One of the traditional strategies for eradicating Fusarium spp. incidents is the use of chemical and synthetic fungicides. The excessive use of these products generates environmental damage and has negative effects on crop yield. It puts plants in stressful conditions, kills the natural soil microbiome, and makes phytopathogenic fungi resistant. Finally, it also causes health problems in farmers. This drives the search for and selection of natural alternatives, such as bio-fungicides. Among natural products, algae and cyanobacteria are promising sources of antifungal bio-compounds. These organisms can synthesize different bioactive molecules, such as fatty acids, phenolic acids, and some volatile organic compounds with antifungal activity, which can damage the fungal cell membrane that surrounds the hyphae and spores, either by solubilization or by making them porous and disrupted. Research in this area is still developing, but significant progress has been made in the identification of the compounds with potential for controlling this important pathogen. Therefore, this review focuses on the knowledge about the mechanisms of action of the fatty acids from macroalgae, microalgae, and cyanobacteria as principal biomolecules with antifungal activity, as well as on the benefits and challenges of applying these natural metabolites against Fusarium spp. to achieve sustainable agriculture.
Lawns play a vital role in urban development, but the impact of sod production on soil properties has always been controversial. In this study, we examined the physical, chemical, and biological properties of sod production bases across different regions and years [including northern China (2.5, 3, 5, 6, 8, 10, 12 years), referred to as N-2.5, N-3, etc., and southern China (3, 10, 11, 14, 17 years), referred to as S-3, S-10, etc.], with tall fescue and Kentucky bluegrass planted in the north and bermudagrass or creeping bentgrass planted in the south. Sod production was found to increase soil bulk density while reducing porosity and field capacity, but these effects did not consistently intensify with longer production periods. Except for available phosphorus and available potassium, other soil nutrients (total carbon, total nitrogen, organic matter, alkali-hydrolyzable nitrogen, etc.) were either unaffected or increased at certain time points (S-11, S-14). Prolonged sod production (S-10, S-17) also boosted microbial content. In northern regions, organic matter and total nitrogen were the key factors influencing microbial community structure, whereas in southern regions, alkali-hydrolyzable nitrogen, electrical conductivity, available potassium, and organic matter were most influential. We also found that crop rotation, sand mulching, and deep plowing could enhance soil nutrient content and microbial activity in sod production.
The extraradical mycelium of mycorrhizal fungi is among the major carbon pools in soil that is hard to quantitatively assess in-situ. Established method of in-growth mesh bags in temperate ecosystems is difficult to apply in the tropics, where mesh bags are often damaged by termites. Here we introduce a modification of the ingrowth mesh bag technique, in which mesh bags are enforced by stainless steel mesh. Its performance was tested in the Dong Nai (Cat Tien) National Park in Vietnam across two monsoon tropical forests, dominated by tree species associated with either ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. Armored ingrowth mesh bags remained intact, while about 60 % of non-armored mesh bags were damaged by termites after 180 days of exposure. The biomass of extraradical mycelium of ectomycorrhizal fungi estimated by PLFA analysis was similar in the armored and non-armored mesh bags and did not differ between studied forests. However, fungal community composition slightly differed between armored and non-armored mesh bags in the ECM-but not in the AM-dominated forest. Fungal mycelium gathered in the AM-dominated forest was depleted in N-15 compared to that collected in the ECM-dominated forest. Overall, our results argue for using armored mesh bags as a robust tool for harvesting the biomass of extraradical mycelium of mycorrhizal fungi in tropical ecosystems.
Alterations in snow cover driven by climate change may impact ecosystem functioning, including biogeochemistry and soil (microbial) processes. We elucidated the effects of snow cover manipulation (SCM) on above-and belowground processes in a temperate peatland. In a Swiss mountain-peatland we manipulated snow cover (addition, removal and control), and assessed the effects on Andromeda polifolia root enzyme activity, soil microbial community structure, and leaf tissue and soil biogeochemistry. Reduced snow cover produced warmer soils in our experiment while increased snow cover kept soil temperatures close-to-freezing. SCM had a major influence on the microbial community, and prolonged 'close-to-freezing' temperatures caused a shift in microbial communities toward fungal dominance. Soil temperature largely explained soil microbial structure, while other descriptors such as root enzyme activity and pore-water chemistry interacted less with the soil microbial communities. We envisage that SCM-driven changes in the microbial community composition could lead to substantial changes in trophic fluxes and associated ecosystem processes. Hence, we need to improve our understanding on the impact of frost and freeze-thaw cycles on the microbial food web and its implications for peatland ecosystem processes in a changing climate; in particular for the fate of the sequestered carbon.
In the future, climate models predict an increase in global surface temperature and during winter a changing of precipitation from less snowfall to more raining. Without protective snow cover, freezing can be more intensive and can enter noticeably deeper into the soil with effects on C cycling and soil organic matter (SOM) dynamics. We removed the natural snow cover in a Norway spruce forest in the Fichtelgebirge Mts. during winter from late December 2005 until middle of February 2006 on three replicate plots. Hence, we induced soil frost to 15cm depth (at a depth of 5 cm below surface up to -5 degrees C) from January to April 2006, while the snow-covered control plots never reached temperatures < 0 degrees C. Quantity and quality of SOM was followed by total organic C and biomarker analysis. While soil frost did not influence total organic-C and lignin concentrations, the decomposition of vanillyl monomers (Ac/Ad)(V) and the microbial-sugar concentrations decreased at the end of the frost period, these results confirm reduced SOM mineralization under frost. Soil microbial biomass was not affected by the frost event or recovered more quickly than the accumulation of microbial residues such as microbial sugars directly after the experiment. However, in the subsequent autumn, soil microbial biomass was significantly higher at the snow-removal (SR) treatments compared to the control despite lower CO2 respiration. In addition, the water-stress indicator (PLFA [cy17:0 + cy19:0] / [16:1 omega 7c + 18:1 omega 7c]) increased. These results suggest that soil microbial respiration and therefore the activity was not closely related to soil microbial biomass but more strongly controlled by substrate availability and quality. The PLFA pattern indicates that fungi are more susceptible to soil frost than bacteria.