Permafrost in the Arctic regions is degrading in response to decades of amplified warming. Advanced degradation of ice-rich permafrost could significantly alter the water balance by increasing runoff and flooding. How do the hydrological changes in river systems, in turn, affect the permafrost thermal state, specifically in floodplains? First, we develop a first-order heat budget approach to simulate evolving river-water temperature. The river-water thermal model includes heat exchanges at both the air-water and water-subsurface interfaces and can accurately estimate water temperature. Then, river-water temperature is employed as an upper boundary condition for the control volume permafrost model, which models the thermal state of shallow permafrost. The combined model is validated and applied in the Kuparuk River floodplain, Alaska. Results indicate that permafrost warms rapidly during inundation and that channelbelt active layer thickness can deepen by more than 1 m. We find that earlier arrival of the spring freshet and associated earlier inundation onset, as well as increase in river discharge, can significantly increase subsurface permafrost temperature and lead to a deepening of the active layer. In recent years Kuparuk River streamflow has arrived earlier, and mean annual river discharge has increased by 35% since the 1970s. New permanent water and seasonal water appeared throughout the river network of the Kuparuk River since the 1980s according to satellite observations. These hydrological changes likely have contributed to the expansion of riverbed thaw bulbs and the degradation of floodplain permafrost.
High-latitude permafrost regions store large stocks of soil organic carbon (OC), which are vulnerable to climate warming. Estimates of subsurface carbon stocks do not take into account floodplains as unique landscape units that mediate and influence the delivery of materials into river networks. We estimate floodplain soil OC stocks within the active layer (seasonally thawed layer) and to a maximum depth of 1 m from a large field data set in the Yukon Flats region of interior Alaska. We compare our estimated stocks to a previously published data set and find that the OC stock estimate using our field data could be as much as 68% higher than the published data set. Radiocarbon measurements indicate that sediment and associated OC can be stored for thousands of years before erosion and transport. Our results indicate the importance of floodplains as areas of underestimated carbon storage, particularly because climate change may modify geomorphic processes in permafrost regions.