Reconstructing fluvial dynamics is a fundamental requirement for understating the interaction between past environmental changes and human adaptation. This study focuses on the central part of the floodplain of the Nan River in northern Thailand that likely played a role in the catastrophic flood of 1818 CE, which damaged the ancient of Nan city and forced its relocation. We investigated nine sediment cores from the floodplain and from the eastern tributaries of the Nan River, to identify the potential source of floods in the past. By combining the analyses of sedimentary characteristics and provenance, the study reveals that the eastern tributaries were the dominant sediment source for most areas, with the Nan River only influencing areas close to its channel. According to optically stimulated luminescence dating, the highest sediment accumulation occurred during the eleventh to thirteenth centuries CE, coinciding with agricultural expansion and deforestation, suggesting increased erosion in the catchment of the tributaries. These findings challenge the assumption that the main Nan River has been the primary contributor to flooding catastrophes in the region and highlights the potential crucial role of smaller tributaries in similar settings in other parts of the globe.
Proper characterization of river flow is essential for the development of structural and non-structural measures to reduce flood damages, restore ecosystem functions, and manage environmental contaminants in riparian zones. The duration of flood events is an important feature that drives riverine processes and functions such as erosion, geomorphic adjustment, habitat suitability, and nutrient and water quality dynamics. Despite this, most flood characterization methods focus on relating the magnitude of annual-maximum discharges to frequency, without addressing the duration of flood events. We investigated event-specific discharge-duration dynamics at 33 USGS stream gages within the US state of Vermont. Building on the method of Feng et al., 2017, , flood events from 15-min discharge timeseries were extracted using an automated threshold method. A statistical model was fit at each gage for both frequency of discharge exceedance and conditional duration of discharge exceedance. This Duration-Over-Threshold model estimates the arrival rate of a discharge threshold, q, being exceeded for a given duration, d. Fitted model parameters were compared to basin and channel physiographical characteristics to develop regional regression equations and examine potential watershed processes underlying the duration dynamics. Model parameters summarizing event duration were best predicted by drainage area, mainstem slope, and soil depth/type. The regional regression equations enable design event estimation in ungaged catchments of the study region, which may be used to improve the predictive capacity of hydraulic and ecosystem models, outline a range of potential geomorphic trajectories, or inform emergency management plans and flood damage rating curves.
The 2021 Cyclone Seroja was a category 3 storm that made landfall on Lembata Island, causing extensive damage. This study aims to identify key interpretations of sediment transport related to tropical cyclones (TC) Seroja and past floods using a geopedological approach, estimate the return period through frequency analysis, and determine the rainfall threshold for flooding using HEC-RAS software. Extreme rainfall data from global precipitation model (GPM) (2000-2023) in Wei Laing watershed were analysed alongside LiDAR terrain data, physical and chemical properties of soil, and land cover data. Based on geopedological analysis, the result shows that the erosional-transfer zone of Wei Laing Watershed has thin, loamy, and slightly sandy soils due to erosion and limited pedogenesis. The depositional zone contains flood deposits with abrupt vertical texture changes, reflecting transported coarse grains and finer in-situ sediments. The modern flood deposit (TC Seroja flood deposit) was identified by texture, CaCO3 content, organic matter, and coarse organic material. The fine-grained flood deposits (<_ 4 cm) are classified as slackwater deposits, consist of silty clay loam and silt loam textures, reflecting deposition under slow-flowing conditions. TC Seroja corresponds to a 50-year return period. Hydrological modelling indicates a 60 mm/day rainfall threshold for flooding, with 77 flood events recorded between 2000-2023. The model is confirmed by thick past flood deposits enriched with coarse organic materials. These findings provide insight into flood dynamics and sedimentary responses, supporting future flood risk mitigation efforts.
This study investigated an effective protection strategy for the intermediate period of the bioprotection technique using the jute rope grid. This paper presents the results and interpretation of the experimental study of a model river bank subjected to failure under sudden drawdown conditions and its response after protection with the jute rope grid under the geo-fluvial condition. The model bank was composed of silty clay soil collected from Parlalpur ferry ghat on the left bank of river Ganga, Malda district, West Bengal, India. In this experimental study model, the model river bank with a slope of 1 V:1.5H was prepared in the laboratory considering a linear scale of 1:25 to simulate a prototype river bank in the upper reach of river Ganga in West Bengal, India. The first series of experiments examined the impacts of maximum flood duration, moisture content, and drawdown on the shifting of failure location at the most damaged of the river bank. The second series of experiments were performed for the model river bank protected with a jute rope grid of various mesh grid areas. At critical geo-fluvial conditions, the effect of the jute rope grid having different mesh grid sizes was investigated to improve failure location and reduce settlement depth at the most damaged of the river. This study showed a reduction in the damaged area of the bank from 57.8 to 16.7% and 94.8% reduction of settlement employing the optimum jute mesh grid area of 6.25 cm2.
Climate change in the northern circumpolar regions is rapidly thawing organic-rich permafrost soils, leading to the substantial release of dissolved CO2 and CH4 into river systems. This mobilization impacts local ecosystems and regional climate feedback loops, playing a crucial role in the Arctic carbon cycle. Here, we analyze the stable carbon (delta 13C) and radiocarbon (F14C) isotopic compositions of dissolved CO2 and CH4 in the Sagavanirktok and Kuparuk River watersheds on the North Slope, Alaska. By examining spatial and seasonal variations in these isotopic signatures, we identify patterns of carbon release and transport across the river continuum. We find consistent CO2 isotopic values along the geomorphological gradient, reflecting a mixture of geogenic and biogenic sources integrated throughout the watershed. Bayesian mixing models further demonstrate a systematic depletion in 13C and 14C signatures of dissolved CO2 sources from spring to fall, indicating increasing contributions of aged carbon as the active layer deepens. This seasonal deepening allows percolating groundwater to access deeper, older soil horizons, transporting CO2 produced by aerobic and anaerobic soil respiration to streams and rivers. In contrast, we observe no clear relationships between the 13C and 14C compositions of dissolved CH4 and landscape properties. Given the reduced solubility of CH4, which facilitates outgassing and limits its transport in aquatic systems, the isotopic signatures are likely indicative of localized contributions from streambeds, adjacent water saturated soils, and lake outflows. Our study illustrates that dissolved greenhouse gases are sensitive indicators of old carbon release from thawing permafrost and serve as early warning signals for permafrost carbon feedbacks. It establishes a crucial baseline for understanding the role of CO2 and CH4 in regional carbon cycling and Arctic environmental change.
Splays-fan-shaped depositional landforms produced by overbank deposition by unconfined flows-can damage structures, degrade arable land and incur substantial mitigation costs. Splay-related hazards along many rivers are likely to worsen with the increasing magnitude and frequency of major floods. The highly incomplete understanding of splays on braided streams is a conspicuous knowledge gap in a changing world with more frequent and intense floods. The largest recorded flood on the braided, sand-dominated lower Platte River (eastern Nebraska, USA) in March 2019 resulted from the rapid melting of a deep, moist snowpack during an extreme rain-on-snow, bomb-cyclone event. This flood produced 32 large (as much as 234 ha) splays that buried structures and cropland under sand. A total of 1,438 ha of row crop was buried, equating to 1.2 million dollars in lost revenue. These splays diverged from the channel by 14 degrees to 104 degrees along a 122 km reach. The topography of preexisting abandoned channels strongly controlled the shape and orientation of most splays, although forested areas tended to trap or divert sediment. The flood eroded 2.2 to 202 m(2) m(-1) of the streambank at 11 of the splays. The five largest splays (>100 ha) deposited as much as 2.4 m of sand. Ground-penetrating radar profiles of the largest splay indicate that it consisted almost entirely of overbank deposits exhibiting simple downstream accretion that buried the pre-flood soil under <= 1 m or less of sand. Locally, however, this soil was eroded during the flood. Climate models predict increasing winter precipitation in the Platte River basin; therefore, the frequency of major floods should increase, making splays recurrent hazards. Our geomorphic assessment of the splays on the lower Platte River illustrates the need for future hazard and mitigation planning.
Channel retreat can be responsible for the significant loss of banks, farmland, and wetlands, leading to drastic changes in fluvial sediment and local river regimes. Although current studies focus on the erosion process of natural river channels, the mechanism by which revetments, such as the flexible mattress, influence bank evolution is still unclear. Hence, by conducting a generalized model experiment, this study investigates the point bar failure process under the mattress protection, i.e., the episodic event when the soil reaches the static equilibrium state. Specifically, a scour hole develops at the junction between the soft and hard materials, causing mattress suspension on the bank toe's side wall and resulting in a reduction coefficient for transverse scouring rate ranging from 0.08 to 0.15. Based on the theories of soil mechanics and river dynamics, the critical conditions for point bar instability were deduced, and a mechanical model describing its erosion process under the mattress protection was established. Furthermore, our model calculated the bank morphology and total erosion volume at different periods in the flume experiment, demonstrating a good agreement with the measured data. Additionally, variations in stability coefficient and forces exerted on soil (including shear strength, gravity, and fluid pressure) of the typical sections during point bar retreat were analyzed. Sensitivity analysis of the bank toe stability emphasized the controlling effect of soil mechanical properties and the negative feedback of mattress weight. The results reveal the interaction mechanism between the mattress protection and point bar failure, theoretically guiding the bank erosion strengthening and river management planning.
Geodiversity elements contribute significantly to local and global hydrological, biogeochemical and ecosystem services and as such, fire is a potentially disruptive force with long-term implications. from limiting karstic speleothems formation, to compounding impacts of peat-fire-erosion cycles. Geodiversity elements additionally possess important cultural, aesthetic, and environmental values, including the support of ecosystem services. Hence, assessments of potential fire damage should consider implications for land users, society, and culture, alongside the geomorphic impacts on geodiversity elements. With a view to providing a concise set of descriptors of the response of geodiversity elements to fire, we qualify and in places, quantify, how fire may degrade geosystem function. Where possible, we highlight the influence of fire intensity and frequency gradients, and cumulative fire, in the deterioration of geodiversity values. Geoconservation is integral to protected areas with implications from fire effected geodiversity functions and values presenting issues for management, with potential consequences extending through to delisting, degazetting, and resizing of protected areas. Future research in reserve systems should concentrate on understanding the synergistic and compounding effects of fire on the geophysical landscape. Geodiversity provides valuable benefits through its existence and function. Fire can degrade geodiversity elements in several ways, on vast spatial and temporal scales, with implications for geoconservation and protected areas management. Understanding recovery rates of geodiversity elements, and the cumulative impact of fire on geodiversity, requires further research.
This paper discusses the potential response of fluvial processes and landforms to the projected permafrost degradation and related hydrological change. Fluvial system structure is presented in the first of the paper along with permafrost controls over its functioning, which vary across fluvial system compartments. The distinction is drawn between primarily fluvial landforms that are expected to adjust to future hydrology with less permafrost constraints, and primarily cryogenic landforms evolving in line with permafrost disturbances. The influence of permafrost on fluvial action varies across compartments: on hillslopes, permafrost mostly controls the occurrence of surface runoff, in river valleys and channels, sediment erodibility, while thermal interaction is essential for growing thermo-erosional gullies. Observed and projected changes in permafrost and hydrology are outlined, and their relevance for cryo-fluvial evolution of fluvial systems is reviewed. Based on these projections, future changes in fluvial action in each compartment are discussed. On hillslopes, where permafrost exerts important controls on hillslope hydrology, fluvial activity of overland flow is expected to decrease following the active layer deepening and decreased overland flow duration. In erosional networks, controlled by thermal interaction between runoff and permafrost terrain, higher water temperature is expected to increase the occurrence and rates of thermo-erosional gully development. In river valleys and channels, where permafrost controls the erodibility of bed and bank material, the expected fluvial feedbacks vary across scales and stream orders, and include changes in seasonality of channel deformations, increased retreat rates in lower river banks and decreased, in higher banks, along with floodplain subsidence, and minor potential for complete destabilization of existing channel patterns. Future collateral effects of fluvial change include alterations of terrestrial biogeochemical cycles and societal impact that must be accounted for in climate change adaptation and mitigation strategies.
This review article deals with bank erosion from the perspective of rivers affected by seasonal ice formation. These rivers drain half of the terrestrial land surface globally, and are mainly located in both periglacial and cold, non-periglacial environments across the Northern Hemisphere. This review is based on a literature survey of 126 publications (articles, technical reports, conference papers and book chapters) documenting case studies in temperate and polar climates. The first details the global issues of bank erosion and pinpoints concerns specific to northern environments. The second describes the dominant erosion processes (fluvial vs. terrestrial), mechanisms (mechanical vs. thermal) and typical landforms encountered in the literature. The third reviews the environmental factors (hydraulic vs. non-hydraulic) controlling bank erosion, with a focus on the different forms of river ice. The fourth deals with the spatial and temporal variability in bank-erosion processes, discussing the distribution of process dominance occurring at the reach scale and the catchment scale, and describing the temporal window in which each process dominates. The fifth reviews the expected impacts on bank erosion resulting from climate-induced disturbances on hydrological cycles and from increasing anthropogenic pressures along riverbanks in northern countries. The relationships among erosion processes, environmental factors, climate change, and human impacts are summarized in a sixth that introduces a new synthetic conceptual diagram of bank erosion. Research needs that should be investigated in the future are highlighted in the seventh while the final synthesizes all the aspects presented in this review.