Zinc deficiency is one of the most widespread nutritional problems, affecting nearly one-third of the world population. In addition, it is known that zinc deficiency not only reduces crop yield but also its quality. The effect of different methods of zinc application on the growth, yield, and quality of safflower seeds under regular irrigation and interruption of irrigation from flowering to harvest (82 and 80 DAS in the first and second years, respectively) was evaluated. Zinc sulfate was applied in both soil and foliar methods. The zinc sulfate treatments include no zinc sulfate, soil application of 20, 40, and 60 kg ha(-1) at the planting stage; spraying 2.5, 5, and 7.5 g L-1 in the rosette stage; and spraying 2.5, 5, and 7.5 g L-1 in the flowering stage. The end-season drought caused a decrease in the chlorophyll index, leaf area index, relative water content, plant height, yield components, biological yield, seed yield, harvest index, seed oil content, oil harvest index, and seed element content compared to regular irrigation. The decrease in yield occurred with a decrease in the capitol number and diameter, seed number per capitol, and 1000-seed weight. The severity of the damage of the end-season drought stress in the second year was higher than in the first year due to the higher temperatures and the decrease in the rainfall. In both years, the application of zinc sulfate in different ways had an increasing effect on the studied traits in both normal and stress conditions. The application of zinc sulfate reduced the negative effects of unfavorable environmental conditions and improved the yield and nitrogen, phosphorus, potassium, zinc, and iron element content in the seed. In both application methods of zinc sulfate, the increment in the zinc sulfate concentration decreased the seed phosphorus content. However, the phosphorous content was more than that of the treatment of non-zinc application. The application of zinc increased the biological, seed, and oil yield of the treated plants, but the seed and oil yield were more affected. This effect was shown in the seed and oil harvest index increment. Under regular irrigation, higher concentrations of zinc sulfate enhanced plant performance, but under stress conditions, medium and lower concentrations were more effective. The highest 1000-seed weight and potassium and zinc content were obtained by spraying zinc sulfate at 5 g L-1 in the flowering stage under normal irrigation conditions. A comparison of the two methods of applying zinc sulfate showed that foliar spraying was more effective than soil application in improving the seed yield. The soil application is more effective on biological yield than seed yield.
Pesticide application is used in horticulture to reduce plant damage from organisms such as insects and mites. Systemic insecticides are highly ef fi cacious and readily taken up by plant tissues. However, pesticide -treated plants may impose risks to nontarget insects or other organisms within ecosystems. In this study, insecticide residues in nectar, leaves, and fl ower petals of the horticulturally signi fi cant herbaceous annual snapdragon, Antirrhinum majus (Lamiales: Plantaginaceae), were assessed at two locations over several weeks following foliar and drench treatment with fi ve systemic insecticides. Concentrations of the insecticides were determined by liquid chromatography - mass spectrometry. The independent effects Application Method , Application Rate , and Time were statistically signi fi cant among all active ingredients in the three matrices in both sites in California (CA) and New Jersey (NJ). The interaction effects were also generally statistically signi fi cant in the CA site but less consistently so in the NJ site, dependent on the active ingredient and matrix. Post hoc analyses found the highest residue concentrations in leaves and the lowest in nectar, a trend generally consistent over time regardless of active ingredient for both the CA and NJ sites. The results of this study are discussed in the context of conserving pollinators and other bene fi cial insects. It is recommended that similar studies should be implemented in different geographical regions and climates, along with multiyear studies for perennial ornamental plants.
The remediation of soil contaminated with cadmium (Cd) and arsenic (As) has consistently been a complex issue. Foliar application of jasmonic acid (JA) could be a promising agronomic practice for reducing heavy metal accumulations. However, the combined reduction effects and mechanisms of Cd and As in rice through foliar JA application have not been fully explored. In this study, a pot experiment was conducted to investigate rice yield, Cd and As accumulations and translocations, photosynthesis, and ROS-scavenging attributes in Huanghuazhan (HHZ) and Huarun No.2 (HR). The results revealed that 1 mu M JA treatment significantly decreased the concentrations of Cd (by 34.6% in HHZ and 38.3% in HR) and As (by 30.8% in HHZ and 40.8% in HR) in the grains, and increased the percentage of filled-grain and 1000-grain weight in HHZ. The structural equation model (SEM) indicated that grain Cd was directly and positively affected by panicle Cd and leaf sheath Cd, while grain As was directly and positively affected by panicle As, leaf blade As and leaf sheath As. JA application enhanced the net photosynthetic rate and chlorophyll content (both a and b). Additionally, it scavenged levels of H2O2 and O2.-, reduced lipid peroxidation damage by promoting the activities of antioxidant enzymes and altering the cellular redox status in the flag leaves of rice. Overall, these results suggest that foliar JA application of could be an effective strategy for preventing Cd and As accumulations in rice grains in paddy soils with low to medium contamination risks.
Field experiments were conducted in three successive seasons (2019-2021) to evaluate the effects of four commercial organo-mineral fertilizers with biostimulating action (Hendophyt (R), Ergostim (R), and Radicon (R)) on the vegetative and productive performance of young almond trees (Prunus dulcis, cv. Tuono) grown in a semiarid climate in Southern Italy. Foliar treatments were applied three times during each season (at the swollen bud, beginning of flowering, and fruit set-beginning of fruit growth stages). Both 2020 and 2021 were adversely affected by late frosts, resulting in damage to the flowers and small fruits without any positive effect of the biostimulant applications. In contrast, the results obtained during the normal climate year (2019) indicated that the growth of trunk diameter and shoot length of trees tended to increase in biostimulant treatments compared to those of the control. The number of buds and flowers per unit length of the branch revealed no significant differences among years and all compared treatments. However, in 2019, the fruit set percentage, number, and weight of kernels per tree were significantly higher in the biostimulant treatments compared to those of the control. To this regard, the use of biofertilizers is suitable for maintaining soil fertility and improving crop productivity This information holds significance for almond tree growers.
This study comprehensively investigates the physiological and molecular regulatory mechanisms of Camellia oleifera seedlings under drought stress with a soil moisture content of about 30%, where exogenous abscisic acid (ABA) was applied via foliar spraying at concentrations of 50 mu g/L, 100 mu g/L, and 200 mu g/L. The results demonstrated that appropriate concentrations of ABA treatment can regulate the physiological state of the seedlings through multiple pathways, including photosynthesis, oxidative stress response, and osmotic balance, thereby aiding in the restructuring of their drought response strategy. ABA treatment effectively activated the antioxidant system by reducing stomatal conductance and moderately inhibiting the photosynthetic rate, thus alleviating oxidative damage caused by drought stress. Additionally, ABA treatment promoted the synthesis of osmotic regulators such as proline, maintaining cellular turgor stability and enhancing the plant's drought adaptability. The real-time quantitative PCR results of related genes indicated that ABA treatment enhanced the plant's response to the ABA signaling pathway and improved disease resistance by regulating the expression of related genes, while also enhancing membrane lipid stability. A comprehensive evaluation using a membership function approach suggested that 50 mu g/L ABA treatment may be the most-effective in mitigating drought effects in practical applications, followed by 100 mu g/L ABA. The application of 50 mu g/L ABA for 7 h induced significant changes in various biochemical parameters, compared to a foliar water spray. Notably, superoxide dismutase activity increased by 17.94%, peroxidase activity by 30.27%, glutathione content by 12.41%, and proline levels by 25.76%. The content of soluble sugars and soluble proteins rose by 14.79% and 87.95%, respectively. Additionally, there was a significant decrease of 31.15% in the malondialdehyde levels.