共检索到 2

Purpose of ReviewForest roads, which are important for accessing and managing forest areas, are particularly vulnerable to damaging impacts of severe climatic events. Understanding how weather changes affect forest roads is important for their efficient management and to ensure their reliability in supporting forest products supply chains. This paper reviews research conducted on the impact of climate factors on forest roads over the past two decades. The aim of our study was to develop a conceptual framework to support adaptation and mitigation strategies in forest road network management, ensuring sustainable wood flow despite a changing climate.Recent FindingsThrough a review of scientific articles and their results, we provided insights and recommendations to increase the resiliency of forest road infrastructures against the effects of climate change. Framed within the principles of climate-smart forestry, this study also offers practical suggestions to maintain the efficiency and safety of wood transportation networks under changing weather conditions, supporting sustainable forest operations and climate adaptation.SummaryThis review highlights how changes in precipitation and temperature patterns caused by climate change can impact forest road infrastructure and wood transportation. Based on the analysis of the reviewed articles, we identified key consequences such as increased erosion, road deformation, and reduced frozen periods. The research provides dedicated actions to ensure sustainability of forest resources and their infrastructure. This review is a key step towards more resilient and adaptive forest road management practices, helping to reduce the impacts of climate change on forest transportation and ecological systems.

期刊论文 2025-06-06 DOI: 10.1007/s40725-025-00250-y ISSN: 2198-6436

Soil freezing is observed throughout almost the entire forested area of the Russian Federarion in winter. The effect of negative temperatures on dusty-clay soils causes a number of adverse processes that change the properties of the soils themselves. One of the most unfavorable of these processes is the accumulation of moisture in soils under the influence of the movement of the freezing front. When freezing, water-saturated clay soils increase dramatically in volume. This leads to the appearance of frost heaving in the active zone of the forest roadbed, which has an extremely adverse effect on the structure of the entire pavement and can lead to damage to the pavement with a sharp deterioration in the transport and operational qualities of forest roads. To combat frost heaving, it is necessary to study the patterns of changes in the water-thermal regime of road structures. The depth of freezing of the pavement and the roadbed is of the greatest importance for predicting frost heaving and developing measures to combat this phenomenon. The article describes the developed system for monitoring the temperature of the road structure to a depth of 3 m and the measurement results which allow us to evaluate the temperature change at different depths from the road surface and determine the freezing depth. A total of 32 sensors have been installed with a step of 10 cm. A numerical simulation of the freezing process of the pavement and the upper part of the roadbed of a forest road has been performed, with the results compared with the indicators of field observations. Good data convergence has been revealed. According to the results of experimental studies, the freezing value has been 173 cm, and according to the results of numerical simulation - 190 cm. The average error in the results of numerical simulation of the freezing process of the pavement and the upper zone of the forest roadbed has been 8-10 % compared to the experimental data.

期刊论文 2024-01-01 DOI: 10.37482/0536-1036-2024-5-133-142 ISSN: 0536-1036
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页