Integration of breeding innovations and epigenetic modifications offers the potential to boost productivity and promote sustainable agricultural practices, particularly in tomato production, which accounts for 16 % of global vegetable production. They are susceptible to various stress factors, Both abiotic (light, temperature, water, humidity, nutrients) and biotic (pests, diseases), which can impact fruit quality and reduce yield quantity by 50-70 %leading to food insecurity and economic losses. Climatic factors impact the traditional farming of tomatoes in the open field; innovative technologies aim to tackle the adverse effects of both abiotic and biotic stress factors. It highlights advancements in crop productivity and stress tolerance, including increased phytochemicals biosynthesis, improved water use efficiency, and soil salinity tolerance. However, challenges like photooxidative damage and downregulation of anthocyanin biosynthetic genes persist. This review provides highlights of promising technologies to mitigate the impact of stress factors on open field tomato production, highlighting both qualitative and quantitative losses. Besides sustainable systematic solutions, such as agroforestry systems, the advantages of using beneficial microbial endophytes, nanomaterials, and exogenous phytohormones in agriculture are discussed.
Key messageIntegrating airborne laser scanning and satellite time series data across the forest rotation enhances decision-making in precision forestry. This review supports forest managers by illustrating practical applications of these remote sensing technologies at different stages of intensive forest plantation management-such as site assessment, monitoring, and silviculture-helping improve productivity, sustainability, and operational efficiency.ContextIntensively managed forest plantations depend on high-resolution, timely data to guide silviculture and promote sustainability.AimsThis review explores how airborne laser scanning (ALS) and satellite time series data support precision forestry across key stages, including site assessment, establishment, monitoring, inventory updates, growth tracking, silvicultural interventions, and harvest planning.ResultsThe review highlights several key applications. ALS-derived digital elevation models and canopy metrics improve site productivity estimation by capturing micro-topographic variables and soil formation factors. Combining ALS with multispectral data enhances monitoring of seedling survival and health, although distinguishing seedlings from non-living components remains a challenge. ALS-based Enhanced Forest Inventories provide spatially detailed forest metrics, while satellite time series and vegetation indices support continuous monitoring of growth and early detection of drought, fire, and pest stress. ALS individual tree detection models offer insights into competition, stand structure, and spatial variability, informing thinning and fertilization decisions by identifying trees under stress or with high growth potential. These models also help mitigate drought and wind damage by guiding density and canopy structure management. ALS terrain data further support harvest planning by optimizing machinery routes and reducing environmental impacts.ConclusionDespite progresses, challenges remain in refining predictive models, expanding remote sensing applications, and developing tools that translate complex data into field operations. A major barrier is the technical expertise needed to interpret spatial data and integrate remote sensing into workflows. Continued research is needed to improve accessibility and operational relevance. High-resolution data still offer strong potential for adaptive management and sustainability.
Context. The incorporation of trees into integrated crop-livestock systems (ICLS) has been encouraged because of their role in climate change mitigation through plant and soil carbon sequestration. One challenge is to minimize competition (especially for light) and the damage caused by cattle to trees. Aim. This study sought to evaluate the performance of beef heifers grazing on cool-season grasses in two ICLS, crop-livestock (CL) and crop-livestock with immature Eucalyptus grandis trees (CLT), at two nitrogen (N) rates (50 and 150 kg/ha) on pasture. Because these were the first stocking seasons after tree planting, the physical impact of animals (e.g. debarking) on the trees was also evaluated. Methods. The experimental design was randomized blocks with treatments arranged in a 2 x 2 factorial scheme (2 systems x 2 N fertilization rates), with three replicates. Forage production (as dry matter, DM) and animal performance were evaluated for 2 years. Key results. Total forage production and liveweight (LW) gain per area over 117 days of grazing were on average higher for CL (6736 +/- 565 kg DM/ha and 505 +/- 58.6 kg LW/ha respectively) than for CLT (5455 +/- 372 kg DM/ha and 364 +/- 42.3 kg LW/ha), regardless of N rate, and even at similar sward heights (similar to 24 cm). The damage caused by heifers to the bark of the trees was classified as high intensity in 91.1% of the trees, even after the trees had reached a diameter at breast height of 9.9 cm. Conclusions. The interaction between livestock and trees was detrimental to the system's productivity, affecting pasture growth, animal performance and the quality of trees as sawn wood. This finding underscores the importance of selecting appropriate tree species, plant density and species arrangement in ICLS. Implications. Lower tree densities (<237 trees/ha) and preventive measures regarding the use of E. grandis in CLT systems with cool-season grasses are necessary in subtropical regions.
Yield data represent a valuable layer for supporting decision-making as they reflect crop management results. Forestry decision-makers often rely on coarse spatial resolution data (e.g., forest inventory plots) despite the availability of modern harvesters that can provide high-resolution forestry yield data. The objectives of this study were to present a method for generating high-resolution Eucalyptus grandis yield data (individual tree-level) and explore their applications, such as correlation analysis with soil attributes to aid nutrient recommendations. Two evaluations were conducted at two sites in Brazil: (a) assessing the positioning accuracy of the global navigation satellite system (GNSS) receiver positioning, and (b) analyzing the yield data and their correlation with the soil attributes. The results indicated that positioning the GNSS receiver at the harvesting head provided higher accuracy than placement at the top of the harvester cabin for individual tree-level data. Reliable yield data were generated despite the GNSS receiver's increased susceptibility to damage when mounted on a harvest head. The linear correlation analysis between the Eucalyptus grandis yield data and soil attributes showed both negative (Clay, B, S, coarse sand, and potential acidity - H + Al) and positive correlations (K, Mg, pH-SMP, Ca, sum of bases, pH, base saturation, fine sand, total sand, and silt content). This study demonstrates the feasibility of obtaining high-resolution yield data at the individual tree-level and their correlation with soil attributes, providing valuable insights for improving forestry decision-making.
Introduction: Soil drought during summer in Central Europe has become more frequent and severe over the last decades. European forests are suffering increasing damage, particularly Norway spruce. Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), a non-native tree species, is considered as a promising alternative to build drought-resilient forests. The main goal of this study was to investigate the intraannual radial stem growth and sap flow performance of Douglas-fir along a precipitation gradient across Germany under severe drought. Material and methods: Sap flow and stem radial changes of up to ten trees each at four sites with different precipitation regimes were measured in combination with volumetric soil water content during the growing season of 2022. Measurements of stem radial changes were used to calculate the trees' stem water deficit, a proxy for tree water status and drought stress. Results: The severe summer drought of 2022 led to an early growth cessation and a significant reduction in daily sap flow at all four sites monitored. We could identify a site-specific threshold in soil water availability ranging between 21.7 and 29.6% of relative extractable water (REW) under which stem water reserves cannot be replenished and thereby inhibiting radial growth. We could also demonstrate that at this threshold, sap flow is heavily reduced to between 43.5 and 53.3%, and for a REW below 50%, sap flow linearly decreases by 1.1-2.0% per 1% reduction in REW. This reduction tends to follow the humidity gradient, being more pronounced at the most oceanic characterized site and suggesting an adaptation to site conditions. Even though Douglas-fir is considered to be more drought stress resistant than Norway spruce, growth and sap flow are greatly reduced by severe summer drought, which became more frequent in recent years and their frequency and intensity is likely to increase. Conclusions: Our results suggest that timber production of Douglas-fir in Central Europe will decline considerably under projected climate change, and thus pointing to site specific growth constraints for a so far promising non-native tree species in Europe.
Climate change and extreme weather events are threatening agricultural production worldwide. The anticipated increase in atmospheric temperature may reduce the potential yield of cultivated crops. Agroforestry is regarded as a climate-resilient system that is profitable, sustainable, and adaptable, and has strong potential to sequester atmospheric carbon. Agroforestry practices enhance agroecosystems' resilience against adverse weather conditions via moderating extreme temperature fluctuations, provisioning buffers during heavy rainfall events, mitigating drought periods, and safeguarding land resources from cyclones and tsunamis-type events. Therefore, it was essential to comprehensively analyze and discuss the role of agroforestry in providing resilience during extreme weather situations. We hypothesized that integrating trees in to the agro-ecosystems could increase the resilience of crops against extreme weather events. The available literature showed that the over-story tree shade moderates the severe temperature (2-4 degrees C) effects on understory crops, particularly in the wheat and coffee-based agroforestry as well as in the forage and livestock-based silvipasture systems. Studies have shown that intense rainstorms can harm agricultural production (40-70%) and cause waterlogging. The farmlands with agroforestry have been reported to be more resilient to heavy rainfall because of the decrease in runoff (20-50%) and increase in soil water infiltration. Studies have also suggested that drought-induced low rainfall damages many crops, but integrating trees can improve microclimate and maintain crop yield by providing shade, windshield, and prolonged soil moisture retention. The meta-analysis revealed that tree shelterbelts could mitigate the effects of high water and wind speeds associated with cyclones and tsunamis by creating a vegetation bio-shield along the coastlines. In general, existing literature indicates that implementing and designing agroforestry practices increases resilience of agronomic crops to extreme weather conditions increasing crop yield by 5-15%. Moreover, despite its widely recognized advantages in terms of resilience to extreme weather, the systematic documentation of agroforestry advantages is currently insufficient on a global scale. Consequently, we provide a synthesis of the existing data and its analysis to draw reasonable conclusions that can aid in the development of suitable strategies to achieve the worldwide goal of adapting to and mitigating the adverse impacts of climate change.
Accurate knowledge of site conditions and their effects on regeneration establishment is important for selecting the most appropriate tree species and regeneration methods for a given regeneration site. This study examined the response of the first-year field performance of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth.) seedlings in boreal forests to variables available in open forest and natural resources datasets. Survival, height increment and damage of planted tree seedlings and the success of direct seeding of pine were analysed on a total of 284 plots (1000 m(2)) in 18 regeneration experiments established in 2020-2022 in southern and central Finland. The height increment of silver birch was higher than that of conifers, while the lowest mortality rate was found for spruce. In the generalised linear mixed models, topographic wetness index, soil texture, site type and growing stock at clearcut explained the species-specific survival and height increment of planted seedlings and the success of pine seeding. Low-cost, open geospatial data effectively provide useful details on the site conditions suitable for diversifying tree species composition in boreal forests instead of monocultures.
The objective of this study was to advance sustainable forestry development through the creation of mechanical equipment, taking into account forestry operational methods. A suspended automatic feeding and retracting excavation device for tree pits was engineered, and its interaction with soil was investigated by integrating the Discrete Element Method (DEM) with Multi-Flexible Body Dynamics (MFBD). Based on simulation results, the research explored the impact mechanisms of the machine on soil transportation, working load, and fatigue lifespan of the spiral blades for different terrains and operating conditions. The coupling simulation method demonstrated the potential for designing and testing forestry equipment in specific operating environments, reducing time and resource consumption for field testing. Terrain significantly influenced soil disturbance variability, while the effect of operating direction was minor. Operational parameters should consider soil and water conservation, favoring the formation of fish-scale pits. Field tests in forested areas validate the practicality of the apparatus, providing valuable insights for the operation and equipment design of earth augers in hilly regions.
Trees growing in urban environments are often impacted by maintenance or construction work involving the cutting of roots. Tree protection zones have been proposed to avoid critical damage to the tree. However, despite incorporating quantitative information, they heavily rely on expert judgement that remains to be validated. In a study conducted across six parks in Quebec City, Canada, two commonly found tree species, Acer platanoides L. and Tilia cordata Mill., presumed to be different in terms of vulnerability to root damage, were subjected to a range of trenching treatments. The trees were between 23 and 40 cm diameter at breast height (DBH). A safety factor was calculated relating the turning moment the tree can withstand to the turning moment imposed by high winds likely to occur. The safety factor against uprooting was assessed for each tree before and after root trenching using a non-destructive pulling approach. The effects of tree species, distance to the trench, and their combined interaction were tested on tree stability. The relationship between tree stability and soil texture, tree characteristics, and the number of damaged roots were also tested. Safety factors were initially variable, ranging from 0.5 to 4.5. T. cordata safety factors were lower than those of A. platanoides and influenced by soil texture. Trenching treatments had no effect on the safety factor, even when two perpendicular trenches were dug at 1 m from the stem. No index of the amount of root damaged was significantly related to the safety factor. Root trenching treatments that encroached closer to the tree trunk than the recommended tree protection zones did not affect the stability of both species. Nevertheless, it is essential to recognize that other ecophysiological processes might still be influenced, and long-term monitoring is crucial. Both should be taken into account when determining these zones.
The West Bogor area experienced a landslide disaster, causing extensive damage to secondary forest areas, plantations, and residential homes. Despite evacuations, the community persists in using the affected land for agriculture. This study aims to develop a land management model based on agroforestry for post-landslide restoration, to prevent landslide reactivation, and to provide benefits for the local community. Introducing an agroforestry system that includes deep-rooted trees and perennial crops on landslide-prone slopes can improve slope stability by enhancing soil structure and water retention, minimising erosion and landslides. The study examines unexplored aspects of landslide characteristics and zoning as a novel approach to improve mitigation strategies. We classify the post-landslides area into depletion, transition, and accumulation zones. The lithology comprises Breccia with pumice and Andesite gravels, a sandy tuff matrix, and Claystone underneath, acting as the slip surface. The northern landslide has depletion, transition, and accumulation zones ranging from 743 to 710 m above sea level (masl), 710 to 694 masl, and 694 to 676 masl. In the southern landslide, these zones range from 783 to 720 masl, 720 to 705 masl, and 705 to 676 masl. Based on the characteristics of those zones, we develop an agroforestry model in a vertical pattern with species strata, fast-growing local plants, strong and deep roots, and a relatively high evapotranspiration rate. The depletion zone is managed as a complex agroforestry system (forest type) consisting primarily of forest plants and plantation crops. The transition zone is a complex agroforestry (garden type) with plantation crops and some forest plants. The accumulation zone is a simple agroforestry system with seasonal crops. On almost flat land in an accumulation zone suitable for Oryza sativa cultivation, we apply Cocos nucifera as a protective plant. Soil fertility in all zones is improved with organic and inorganic fertilization, and it also increases the mycorrhizal population through the planting of leguminous plants. The multistrata agroforestry model, created and adapted to the specific characteristics and zoning of landslide-prone areas, is expected to significantly enhance landslide restoration and erosion mitigation and reduce the risk of future landslides. Such approaches can be extended to regions with comparable characteristics.