共检索到 8

This study quantifies the seismic fragility assessment of shallow-founded buildings in liquefiable and treated soils, enhanced by drainage and densification, considering both short-and long-term behaviors. A conceptual framework is proposed for developing seismic fragility curves based on engineering demand parameters (EDPs) of buildings subjected to various earthquake magnitudes. The framework for establishing seismic fragility curves involves three essential steps. First, nonlinear dynamic analyses of soil-building systems are performed to assess both the short-term response, which occurs immediately following an earthquake, and the longterm response, when excess pore water pressure completely dissipates, and generate a dataset of building settlements. The seismic responses are compared in terms of excess pore water pressure buildup, immediate and residual ground deformation, and building settlement to explore the dynamic mechanisms of soil-building systems and evaluate the performance of enhanced drainage and densification over short-and long-term periods. Second, 38 commonly used and newly proposed intensity measures (IMs) of ground motions (GMs) are comprehensively evaluated using five statistical measures, such as correlation, efficiency, practicality, proficiency, and sufficiency, to identify optimal IMs of GMs. Third, fragility curves are developed to quantify probability of exceeding various capacity limit states, based on structural damage observed in Taiwan, for both liquefaction-induced immediate and residual settlements of buildings under different levels of IMs. Overall, this study proposes a rapid and straightforward probabilistic assessment approach for buildings in liquefiable soils, along with remedial countermeasures to enhance seismic resilience.

期刊论文 2025-07-01 DOI: 10.1016/j.compgeo.2025.107213 ISSN: 0266-352X

Selecting the optimal intensity measure (IM) is essential for accurately assessing the seismic performance of the submarine shield tunnels in the layered liquefiable seabed. However, current research relies on simplistic ranking or filtering methods that neglect the different contributions of each evaluation criterion on IM's overall performance. To address this, this study begins by developing a numerical simulation method for nonlinear dynamic analysis, considering joint deformation, ocean environmental loads, and soil liquefaction, which is validated by experimental and theoretical methods. Subsequently, a fuzzy multiple criteria decision-making (FMCDM) method based on fuzzy probabilistic seismic demand models (FPSDM) is proposed, which integrates the fuzzy analytical hierarchical process (FAHP) for calculating weights and the fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) for ranking IM alternatives. Finally, tunnel damage is classified into four states employing joint opening as the index for measuring damage, then the seismic fragility analysis is conducted. The results indicate that the optimal IM of a submarine shield tunnel situated in layered liquefiable seabed is sustained maximum velocity (SMV). Furthermore, the comparison between the fragility curves established using SMV and peak ground acceleration (PGA) reveals PGA, a frequently employed IM, notably undervaluing the seismic hazard.

期刊论文 2025-05-08 DOI: 10.1007/s11440-025-02618-7 ISSN: 1861-1125

Geotechnical seismic isolation (GSI) is a new concept that has been proposed recently. The injection of polyurethane into the soil layer (non-intrusive GSI) reduces seismic fragility without altering the original structure, which may provide an effective seismic isolation solution for existing bridge structures. The purpose of this study was to investigate the seismic isolation effect and isolation mechanism of non-invasive GSI applied to existing bridges. First, a noninvasive GSI site modeling method is described based on the results of existing soilpolyurethane resonance column tests and the OpenSees computational platform. Subsequently, a refined dynamic analysis model of site-existing bridge interactions was established by combining the rusting theory. The seismic isolation effect of the non-invasive GSI and its effect on the seismic response of the bridge were explored using a nonlinear dynamic time-course analysis. The results showed that non-invasive GSI soils can change the characteristic period of ground motion, thus reducing the site effect. The seismic isolation effect was positively correlated with the percentage of injected polyurethane. Altering the characteristic period of the site and avoiding as many of the preeminent periods of ground motion as possible is the result of noninvasive GSI. The non-invasive GSI soil layer reduces the structural response and provides seismic isolation throughout the life cycle of corroded piers, and its fragility is significantly reduced. Especially, the old piers have significant seismic isolation effect, effectively limiting serious damage or even collapse under earthquakes. The results of this study provide a reference for noninvasive GSI design of existing bridge structures.

期刊论文 2025-05-01 DOI: 10.1016/j.soildyn.2025.109266 ISSN: 0267-7261

Concrete gravity dams, forming a quarter of the ICOLD database with over 61,000 dams, often surpass 50 years of service, necessitating increased maintenance and safety scrutiny. Given the aging and advancing seismic safety methods, reevaluating their seismic resilience, considering material degradation and concrete heterogeneity, is imperative. This study conducts a comprehensive seismic fragility assessment of the Pine Flat Dam at lifecycle stages of 1, 50 and 100 years, accounting for material degradation due to aging and uncertainties from concrete heterogeneity. It develops a 2D dam-foundation-reservoir model with fluid-structure-soil interaction and material nonlinearity using the concrete damage plasticity model. The assessment includes 55 ground motions, selected via the conditional mean spectrum method, representing five return periods from 475 to 10,000 years. Fragility curves are developed by fitting a lognormal distribution to failure probabilities at varying intensities. These curves are compared using damage indices like crest displacement and stress at the dam's neck and heel. Aging increases failure probability, correlating with age and return period, as shown by the leftward shift of fragility curves, while concrete heterogeneity adds uncertainty. The results emphasize the critical need for ongoing seismic fragility reassessments, accounting for aging, environmental exposure, and seismic demands on dam safety.

期刊论文 2025-04-29 DOI: 10.1080/15732479.2025.2499495 ISSN: 1573-2479

River-crossing bridges in high-intensity seismic regions can be vulnerable to the combined action of earthquake and flood hazards; in particular, flood-induced scour of the substructure can have a notable influence on the seismic behavior of bridge structures. Currently, long-span continuous rigid-frame bridges are widely used to cross large rivers worldwide, yet related studies on their seismic performance under flood-induced scour have been lacking. This paper focuses on the effects of time-varying flood-induced scour on the seismic performance of long-span continuous rigid-frame bridges incorporating complex thin-walled reinforced concrete piers with pile group foundations. A detailed finite element (FE) model for a representative bridge structure is developed and the scour depth risk of the bridge is evaluated under several flood events for different return periods. The influence of flood-induced scour on the pile-soil interaction is examined throughout the bridge service life. Detailed seismic fragility assessment is carried out through nonlinear time-history analyses using a large suite of 100 seismic records. Particular focus is given to evaluate the time-varying scour effects on the pile and soil deformations as well as on the component and system level seismic fragility functions. It is shown that the total flood-induced scour depth exhibits a nonlinear increasing trend with the increase in service time, particularly in the initial 10 years of the bridge service life. The deformations of the scoured piles, within a depth of 20 m, are also shown to increase significantly with the increase in service time. The results indicate that the scour has a pronounced effect on both the component and system level seismic fragility functions. Importantly, although the piles (or pile groups) are typically designed to remain elastic under seismic loading, they are shown to be subjected to significant inelastic demands and governing damage levels as a result of time-varying flood-induced scour effect. Overall, this study provides a methodology to assess the time-varying seismic fragility of the scoured long-span rigid-frame bridges with complex thin-walled reinforced concrete piers, which can enhance the multihazard time-varying seismic resilience assessment for bridge structures with similar configurations.

期刊论文 2025-01-01 DOI: 10.1016/j.istruc.2024.107944 ISSN: 2352-0124

Large diameter shield tunnels traversing liquefiable soil-rock strata are highly susceptible to seismic hazards, as earthquake-induced soil liquefaction significantly reduces soil strength and stiffness. Therefore, it is crucial to accurately assess the seismic performance of these tunnels. This study first establishes a numerical model for tunnel seismic response analysis, considering soil liquefaction, segment nonlinearity, and joint deformation. The validity of the model is affirmed through experimental, theoretical, and additional numerical simulations. The probabilistic seismic demand models are established employing the seismic database consisting of 120 ground motion records. Subsequently, a quantitative selection method for the optimal Intensity Measure (IM) based on fuzzy comprehensive evaluation is proposed, identifying Velocity Spectrum Intensity (VSI) as the most suitable among 29 commonly used IMs, and the IMs related to duration exhibit poor performance. The study then categorizes tunnel damage into three states: minor, moderate, and extensive, using joint opening as the damage measure. Finally, seismic fragility analysis is employed to assess seismic performance of tunnel, and fragility curves derived using VSI and Peak Ground Acceleration (PGA) is compared. The results indicate that PGA, a commonly used IM, significantly underestimates the probability of damage to the tunnel, with a maximum underestimation of 22.4%.

期刊论文 2024-10-01 DOI: 10.1016/j.tust.2024.105957 ISSN: 0886-7798

The issue of SSI involves how the ground or soil reacts to a building built on top of it. Both the character of the structure and the nature of the soil have an impact on the stresses that exist between them, which in turn affects how the structure and soil beneath it move. The issue is crucial, particularly in earthquake regions. The interaction between soil and structure is an extremely intriguing factor in increasing or reducing structural damage or movement. Structures sitting on deformable soil as opposed to strong soil will experience an increase in static settlement and a decrease in seismic harm. The engineer must take into account that the soil liquefaction problem occurs for soft ground in seismic areas. A reinforced concrete wall -frame dual framework's dynamic reaction to SSI has not been sufficiently studied and is infrequently taken into consideration in engineering practice. The structures' seismic performance when SSI effects are taken into account is still unknown, and there are still some misconceptions about the SSI idea, especially regarding RC wall -frame dual systems. The simulation study of the soil beneath the foundations significantly impacts the framework's frequency response and dynamic properties. Therefore, the overall significance of SSI in the structural aspect and sustainability aspects will be reviewed in this research.

期刊论文 2024-03-01 DOI: 10.59440/ceer/184254 ISSN: 2080-5187

The seismic damage investigations indicated the high probability for the pile-supported structure to suffer further destruction due to the effects of strong aftershocks, but the seismic fragility assessment of pile-supported structures considering aftershocks rarely attracted notice. In this study, the seismic fragility of a pilesupported structure under the mainshock-aftershock sequence is systematically assessed through the simulation results based on a solid-fluid coupling finite element model. Firstly, the numerical model is validated by the test date got from a centrifuge model in order to check its effectiveness. Then the strong motion records recorded at liquefied sites are selected for synthesizing the seismic sequences through scaling and combination. And the Engineering Demand Parameter (EDP) is dertemined as the residual displacement, representing the cumulative damage caused by seismic sequences. Additionally, the quantitative limit states of EDP corresponding to four damage states considering pile-soil interaction is defined by a push-over analysis. Furthermore, since the choice of optimal Intensity Measures for seismic sequences is beneficial for enhancing the credibility, 24 sets of Intensity Measures are assessed from three sides including efficiency, practicality, and proficiency. Finally, the mainshockaftershock fragility surfaces with two Intensity Measures are proposed, considering the random uncertainty. And the results indicate that mainshock aftershock sequences could induce higher exceedance probabilities of a limit state when comparing to under the excitation of mainshock only. The research results could offer a basis for the seismic performance evaluation of the kind of pile-supported structure.

期刊论文 2024-03-01 DOI: 10.1016/j.rineng.2024.101826 ISSN: 2590-1230
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页