共检索到 2

Microbial activity persists in cold region agricultural soils during the fall, winter, and spring (i.e., non-growing season) and frozen condition, with peak activity during thaw events. Climate change is expected to change the frequency of freeze-thaw cycles (FTC) and extreme temperature events (i.e, altered timing, extreme heat/cold events) in temperate cold regions, which may hasten microbial consumption of fall-amended fertilizers, decreasing potency come the growing season. We conducted a high-resolution temporal examination of the impacts of freeze-thaw and nutrient stress on microbial communities in agricultural soils across both soil depth and time. Four soil columns were incubated under a climate model of a non-growing season including precipitation, temperature, and thermal gradient with depth over 60 days. Two columns were amended with fertilizer, and two incubated as unamended soil. The impacts of repeated FTC and nutrient stress on bacterial, archaeal, and fungal soil community members were determined, providing a deeply sampled longitudinal view of soil microbial response to non-growing season conditions. Geochemical changes from flow-through leachate and amplicon sequencing of 16S and ITS rRNA genes were used to assess community response. Despite nitrification observed in fertilized columns, there were no significant microbial diversity, core community, or nitrogen cycling population trends in response to nutrient stress. FTC impacts were observable as an increase in alpha diversity during FTC. Community compositions shifted across a longer time frame than individual FTC, with bulk changes to the community in each phase of the experiment. Our results demonstrate microbial community composition remains relatively stable for archaea, bacteria, and fungi through a non-growing season, independent of nutrient availability. This observation contrasts canonical thinking that FTC have significant and prolonged effects on microbial communities. In contrast to permafrost and other soils experiencing rare FTC, in temperate agricultural soils regularly experiencing such perturbations, the response to freeze-thaw and fertilizer stress may be muted by a more resilient community or be controlled at the level of gene expression rather than population turn-over. These results clarify the impacts of winter FTC on fertilizer consumption, with implications for agricultural best practices and modeling of biogeochemical cycling in agroecosystems.

期刊论文 2022-07-12 DOI: 10.3389/fenvs.2022.908568

The freeze-thaw (FT) status of soil regulates ecological and hydrologic processes and is, therefore, a vital component of land surface models. This study utilizes a hidden Markov model (HMM) to retrieve surface FT status from L-band [Soil Moisture Active Passive (SMAP)] and K-alpha-band [Advanced Microwave Scanning Radiometer (AMSR)] satellite microwave brightness temperatures in cold-constrained lands north of 45 degrees N. The HMM, parameterized on a per-gridcell basis such that there are two passible states and emissions probabilities are assumed to be a two-component Gaussian Mixture, produces the posterior probability (a continuous variable between 0 and 1) that the surface is frozen given the radiometer input. HMM classification accuracy, averaged over five core validation networks, is acceptable (Ap > 80%) when judged against in situ air and soil temperature measurements from individual validation sites and is comparable to that of current FT products that produce a discrete state. Patterns in performance across variable land class, open water fraction, and elevation are assessed from 91 sparse network weather stations within 87 gridcells in the domain. The resulting satellite data record provides a continuous variable estimate of the daily probability of frozen conditions over northern land areas experiencing widespread thawing of permafrost and a shrinking frozen season due to global warming.

期刊论文 2022-01-01 DOI: 10.1109/TGRS.2022.3174807 ISSN: 0196-2892
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页