Seasonally frozen ground (SFG) is a significant component of the cryosphere, and its extent is gradually increasing due to climate change. The hydrological influence of SFG is complex and varies under different climatic and physiographic conditions. The summer rainfall dominant climate pattern in Qinghai Lake Basin (QLB) leads to a significantly different seasonal freeze-thaw process and groundwater flow compared to regions with winter snowfall dominated precipitation. The seasonal hydrological processes in QLB are not fully understood due to the lack of soil temperature and groundwater observation data. A coupled surface and subsurface thermal hydrology model was applied to simulate the freeze-thaw process of SFG and groundwater flow in the QLB. The results indicate that SFG begins to freeze in early November, reaches a maximum freezing depth of approximately 2 meters in late March, and thaws completely by June. This freeze-thaw process is primarily governed by the daily air temperature variations. During the early rainy season from April to June, the remaining SFG in deep soil hinders the majority of rainwater infiltration, resulting in a two-month delay in the peak of groundwater discharge compared to scenario with no SFG present. Colder conditions intensify this effect, delaying peak discharge by 3 months, whereas warmer conditions reduce the lag to 1 month. The ice saturation distribution along the hillslope is affected by topography, with a 10 cm deeper ice saturation distribution and 3 days delay of groundwater discharge in the steep case compared to the flat case. These findings highlight the importance of the freeze-thaw process of SFG on hydrological processes in regions dominated by summer rainfall, providing valuable insights into the hydro-ecological response. Enhanced understanding of these dynamics may improve water resource management strategies and support future research into climate-hydrology interactions in SFG-dominated landscapes.
2024-11-22 Web of ScienceSoil parameters form the foundation of hydrogeological research and are crucial for studying engineering construction and maintenance, climate change, and ecological environment effects in cold regions. However, the soil properties in the permafrost region of the Qinghai-Tibet Plateau (QTP) remain unclear. Hence, in this study, soil temperature (Ts), volumetric specific heat capacity (C), thermal conductivity (K), thermal diffusivity (D), soil water content (SWC), electric conductivity (EC), vertical (Kv) and horizontal (Kh) saturated hydraulic conductivity, bulk density (rho b), and soil texture near the Qinghai-Tibet Railway were measured, and their effects on the freeze-thaw process were evaluated. The results revealed a predominantly sandy loam soil texture, with Kh and Kv showing strong spatial variability, while the other parameters presented moderate spatial variability. Thermokarst lake had a limited influence on D, C, K, and rho b but significantly reduced Kh and Kv. Groundwater affected SWC, Ts, and EC. The model results showed that all parameters indicated small sensitivities to the maximum thawing depth (MTD), with MTD positively responding to all parameters except for Kv and porosity (rho p). Except for Kh and Kv, all parameters showed high sensitivities to the time from starting to complete freezing (TSCF). TSCF responded positively to C, rho p, and density (rho d) and negatively to K and Kh. This study expanded the quantification of soil properties in the QTP, which can help improve the accuracy of cryohydrogeologic models, thus guiding the construction and maintenance of infrastructure engineering.
2024-11-01 Web of ScienceExploring the complex relationship between the freeze-thaw cycle and the surface energy budget (SEB) is crucial for deepening our comprehension of climate change. Drawing upon extensive field monitoring data of the Qinghai-Tibet Plateau, this study examines how surface energy accumulation influences the thawing depth. Combined with Community Land Model 5.0 (CLM5.0), a sensitivity test was designed to explore the interplay between the freeze-thaw cycle and the SEB. It is found that the freeze-thaw cycle process significantly alters the distribution of surface energy fluxes, intensifying energy exchange between the surface and atmosphere during phase transitions. In particular, an increase of 65.6% is observed in the ground heat flux during the freezing phase, which subsequently influences the sensible and latent heat fluxes. However, it should be noted that CLM5.0 has limitations in capturing the minor changes in soil moisture content and thermal conductivity during localized freezing events, resulting in an imprecise representation of the complex freeze-thaw dynamics in cold regions. Nevertheless, these results offer valuable insights and suggestions for improving the parameterization schemes of land surface models, enhancing the accuracy and applicability of remote sensing applications and climate research.
2024-10-01 Web of ScienceGround freeze-thaw processes have significant impacts on infiltration, runoff and evapotranspiration. However, there are still critical knowledge gaps in understanding of hydrological processes in permafrost regions, especially of the interactions among permafrost, ecology, and hydrology. In this study, an alpine permafrost basin on the northeastern Qinghai-Tibet Plateau was selected to conduct hydrological and meteorological observations. We analyzed the annual variations in runoff, precipitation, evapotranspiration, and changes in water storage, as well as the mechanisms for runoff generation in the basin from May 2014 to December 2015. The annual flow curve in the basin exhibited peaks both in spring and autumn floods. The high ratio of evapotranspiration to annual precipitation (>1.0) in the investigated wetland is mainly due to the considerably underestimated 'observed' precipitation caused by the wind-induced instrumental error and the neglect of snow sublimation. The stream flow from early May to late October probably came from the lateral discharge of subsurface flow in alpine wetlands. This study can provide data support and validation for hydrological model simulation and prediction, as well as water resource assessment, in the upper Yellow River Basin, especially for the headwater area. The results also provide case support for permafrost hydrology modeling in ungauged or poorly gauged watersheds in the High Mountain Asia.
2024-10-01 Web of ScienceObservations from 1,047 meteorological stations from September 1, 2006 to August 31, 2015 revealed regional differences in the freezing and thawing processes of seasonally frozen ground (SFG) across China. SFG generally undergoes a one-way freezing process (i.e., top-down), and the stations with a large freeze depth generally experienced long freeze durations. During the thawing process, soil is generally characterized by two-way thawing (i.e., top-down and bottom-up) in the region north of 35 ' N, ' N, especially north of 30 ' N ' N (except in northeastern China). The onset of thawing from the bottom occurs earlier than that from the top at most stations in the two-way thawing region. The stations exhibiting one-way thawing (i.e., bottom-up) were mainly located on the southern edge of eastern China (east of 110 degrees E) degrees E) and in southern part of Xinjiang and southeast part of the Qinghai-Tibet Plateau. The freezing process lasts several days to more than four months longer than the soil thawing process, and this difference tends to be larger in high-latitude and high-altitude regions. All of the sites experienced a discontinuous freeze-thaw process, the station-average duration of which was less than a quarter of that of the continuous freeze-thaw process. Strong associations of soil freeze depth with air temperature (as characterized by the air freezing index and air thawing index) implied a dominant influence of air temperature on the soil freeze-thaw process. During the freezing process, this relationship was partially modulated by snow cover in snowy regions, such as northeast China, northwest China, and the eastern Tibetan Plateau. This paper provides the first overview of regional differences in the freezing and thawing processes of SFG over China, and the findings improve our understanding of the soil freeze-thaw process and provide important information to support research into regional landscapes, ecosystems, and hydrological processes.
2024-08-01 Web of ScienceThe increase in temperatures and changing precipitation patterns resulting from climate change are accelerating the occurrence and development of landslides in cold regions, especially in permafrost environments. Although the boundary regions between permafrost and seasonally frozen ground are very sensitive to climate warming, slope failures and their kinematics remain barely characterized or understood in these regions. Here, we apply multisource remote sensing and field investigation to study the activity and kinematics of two adjacent landslides (hereafter referred to as twin landslides) along the Datong River in the Qilian Mountains of the Qinghai-Tibet Plateau. After failure, there is no obvious change in the area corresponding to the twin landslides. Based on InSAR measurements derived from ALOS PALSAR-1 and -2, we observe significant downslope movements of up to 15 mm/day within the twin landslides and up to 5 mm/day in their surrounding slopes. We show that the downslope movements exhibit distinct seasonality; during the late thaw and early freeze season, a mean velocity of about 4 mm/day is observed, while during the late freeze and early thaw season the downslope velocity is nearly inactive. The pronounced seasonality of downslope movements during both pre- and post-failure stages suggest that the occurrence and development of the twin landslide are strongly influenced by freeze-thaw processes. Based on meteorological data, we infer that the occurrence of twin landslides are related to extensive precipitation and warm winters. Based on risk assessment, InSAR measurements, and field investigation, we infer that new slope failure or collapse may occur in the near future, which will probably block the Datong River and cause catastrophic disasters. Our study provides new insight into the failure mechanisms of slopes at the boundaries of permafrost and seasonally frozen ground.
2023-08The surface energy budget is closely related to freeze-thaw processes and is also a key issue for land surface process research in permafrost regions. In this study, in situ data collected from 2005 to 2015 at the Tanggula site were used to analyze surface energy regimes, the interaction between surface energy budget and freeze-thaw processes. The results confirmed that surface energy flux in the permafrost region of the Qinghai-Tibetan Plateau exhibited obvious seasonal variations. Annual average net radiation (R-n) for 2010 was 86.5 W m(-2), with the largest being in July and smallest in November. Surface soil heat flux (G(0)) was positive during warm seasons but negative in cold seasons with annual average value of 2.7 W m(-2). Variations in R-n and G(0) were closely related to freeze-thaw processes. Sensible heat flux (H) was the main energy budget component during cold seasons, whereas latent heat flux (LE) dominated surface energy distribution in warm seasons. Freeze-thaw processes, snow cover, precipitation, and surface conditions were important influence factors for surface energy flux. Albedo was strongly dependent on soil moisture content and ground surface state, increasing significantly when land surface was covered with deep snow, and exhibited negative correlation with surface soil moisture content. Energy variation was significantly related to active layer thaw depth. Soil heat balance coefficient K was > 1 during the investigation time period, indicating the permafrost in the Tanggula area tended to degrade.
2022-01-01 Web of ScienceThe freeze-thaw process of active layer can alter soil hydrothermal dynamics and plays an important role in the stability of permafrost ecosystem, particularly under the background of permafrost degradation resulting from climate warming. Wetlands in permafrost regions are considered to be symbiotic with permafrost. However, despite being the principal region of high-latitude permafrost in China, research on the freeze-thaw process in wetland in the Great Hing'an Mountains is limited. In this study, soil temperature and moisture data (from September 2018 to August 2020) collected from shrub and forest swamp observational sites in the Great Hing'an Mountains were used to analyze the freeze-thaw process and soil hydrothermal dynamics. The effect of wetland types on the freeze-thaw process and the coupling characteristics of soil temperature and moisture were discussed. The results demonstrated that the thawing process of active layer was unidirectional, while the freezing was bidirectional, and the thawing process took much longer than freezing process. The distribution of temperature and moisture of active layer varied in different stage of freeze-thaw process, yet similar trends were exhibited in different wetland types during the same freeze-thaw stage. The annual average temperature of forest swamp was higher than that of shrub swamp for all soil depths, while the annual average water content of forest swamp was lower than that of shrub swamp. A significant non-linear correlation was observed between moisture and temperature of each soil layer.
2021-10-01 Web of SciencePermafrost extends 40% of the Qinghai-Tibet Plateau (QTP), a region which contains the headwaters of numerous major rivers in Asia. As an aquiclude, permafrost substantially controls surface runoff and its hydraulic connection with groundwater. The freeze-thaw cycle in the active layer significantly impacts soil water movement direction, velocity, storage capacity, and hydraulic conductivity. Under the accelerating warming on the QTP, permafrost degradation is drastically altering regional and even continental hydrological regimes, attracting the attention of hydrologists, climatologists, ecologists, engineers, and decision-makers. A systematic review of permafrost hydrological processes and modeling on the QTP is still lacking, however, leaving a number of knowledge gaps. In this review, we summarize the current understanding of permafrost hydrological processes and applications of some permafrost hydrological models of varying complexity at different scales on the QTP. We then discuss the current challenges and future opportunities, including observations and data, the understanding of processes, and model realism. The goal of this review is to provide a clear picture of where we are now and to describe future challenges and opportunities. We concluded that more efforts are needed to conduct long-term field measurements, employ more advanced observation technologies, and develop flexible and modular models to deepen our understanding of permafrost hydrological processes and to improve our ability to predict the future responses of permafrost hydrology to climate changes.
2021-01-12 Web of ScienceThe surface energy budget is closely related to freeze-thaw processes and is also a key issue for land surface process research in permafrost regions. In this study, in situ data collected from 2005 to 2015 at the Tanggula site were used to analyze surface energy regimes, the interaction between surface energy budget and freeze-thaw processes. The results confirmed that surface energy flux in the permafrost region of the Qinghai-Tibetan Plateau exhibited obvious seasonal variations. Annual average net radiation (R-n) for 2010 was 86.5 W m(-2), with the largest being in July and smallest in November. Surface soil heat flux (G(0)) was positive during warm seasons but negative in cold seasons with annual average value of 2.7 W m(-2). Variations in R-n and G(0) were closely related to freeze-thaw processes. Sensible heat flux (H) was the main energy budget component during cold seasons, whereas latent heat flux (LE) dominated surface energy distribution in warm seasons. Freeze-thaw processes, snow cover, precipitation, and surface conditions were important influence factors for surface energy flux. Albedo was strongly dependent on soil moisture content and ground surface state, increasing significantly when land surface was covered with deep snow, and exhibited negative correlation with surface soil moisture content. Energy variation was significantly related to active layer thaw depth. Soil heat balance coefficient K was > 1 during the investigation time period, indicating the permafrost in the Tanggula area tended to degrade.
2020-11