共检索到 2

Freeze-thaw cycles significantly affect soil behavior, leading to pavement failures and infrastructure damage, especially in seasonally freezing regions. The application of road salt for deicing operations introduces high salt concentrations into soils, which can alter their physical properties. Salt in soils affects their freezing point, moisture migration, and overall freeze-thaw behavior. This study investigates the effects of varying sodium chloride (NaCl) concentrations on sandy soil using both the ASTM and low-temperature-gradient methods to simulate different freezing protocols. The methodology involved subjecting soil specimens with 0%, 0.2%, 1%, and 5% salt concentrations to freeze-thaw cycles and measuring parameters such as heave rate, maximum heave, water intake, moisture content, and salt migration. The results revealed that increasing salt concentration leads to a reduction in the freezing point, with the 5% NaCl concentration showing the most significant depression at 2.96 degrees C. The heave rate and maximum heave decreased with higher salt concentrations: the 5% NaCl concentration reduced the heave rate to 11.3 mm/day (ASTM method) and 1.5 mm/day (low-temperature-gradient method) from 22.5 mm/day (ASTM method) and 17.2 mm/day (low-temperature-gradient method) in control. Salt migration analysis indicated more variability in salt distribution within the soil profile under the low-temperature-gradient method, especially at higher salt concentrations. This variability is linked to osmotic suction effects, which retain more water within the soil matrix during freeze-thaw cycles. The study highlights the importance of considering both salinity and freezing protocols in understanding soil behavior under freeze-thaw conditions.

期刊论文 2025-05-11 DOI: 10.1177/03611981251330893 ISSN: 0361-1981

We present a method to characterize soil moisture freeze-thaw events and freezing/melting point depression using permittivity and temperature measurements, readily available from in situ sources. In cold regions soil freeze-thaw processes play a critical role in the surface energy and water balance, with implications ranging from agricultural yields to natural disasters. Although monitoring of the soil moisture phase state is of critical importance, there is an inability to interpret soil moisture instrumentation in frozen conditions. To address this gap, we investigated the freeze-thaw response of a widely used soil moisture probe, the HydraProbe, in the laboratory. Soil freezing curves (SFCs) and soil thawing curves (STCs) were identified using the relationship between soil permittivity and temperature. The permittivity SFC/STC was fit using a logistic growth model to estimate the freezing/melting point depression (T-f/m) and its spread (s). Laboratory results showed that the fitting routine requires permittivity changes greater than 3.8 to provide robust estimates and suggested that a temperature bias is inherent in horizontally placed HydraProbes. We tested the method using field measurements collected over the last 7 years from the Environment and Climate Change Canada and the University of Guelph's Kenaston Soil Moisture Network in Saskatchewan, Canada. By dividing the time series into freeze-thaw events and then into individual transitions, the permittivity SFC/STC was identified. The freezing and melting point depression for the network was estimated as T-f/m = - 0.35 +/- 0.2,with T-f = - 0.41 +/- 0.22 degrees C and T-m = - 0.29 +/- 0.16 degrees C, respectively.

期刊论文 2020-05-01 DOI: 10.1029/2019WR026020 ISSN: 0043-1397
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页