在列表中检索

共检索到 2

In the context of global climate change, changes in unfrozen water content in permafrost significantly impact regional terrestrial plant ecology and engineering stability. Through Differential Scanning Calorimetry (DSC) experiments, this study analyzed the thermal characteristic indicators, including supercooling temperature, freezing temperature, thawing temperature, critical temperature, and phase-transition temperature ranges, for silt loam with varying starting moisture levels throughout the freezing and thawing cycles. With varying starting moisture levels throughout the freezing and thawing cycles, a model describing the connection between soil temperature and variations in unfrozen water content during freeze-thaw cycles was established and corroborated with experimental data. The findings suggest that while freezing, the freezing and supercooling temperatures of unsaturated clay increased with the soil's starting moisture level, while those of saturated clay were less affected by water content. During thawing, the initial thawing temperature of clay was generally below 0 degrees C, and the thawing temperature exhibited a power function relationship with total water content. Model analysis revealed hysteresis effects in the unfrozen water content curve during freeze-thaw cycles. Both the phase-transition temperature range and model parameters were sensitive to temperature changes, indicating that the processes of permafrost freezing and thawing are mainly controlled by ambient temperature changes. The study highlights the stability of the difference between freezing temperature and supercooling temperature in clay during freezing. These results offer a conceptual framework for comprehending the thawing mechanisms of permafrost and analyzing the variations in mechanical properties and terrestrial ecosystems caused by temperature-dependent moisture changes in permafrost.

期刊论文 2025-03-16 DOI: 10.3390/w17060846

Warmer winters in Arctic regions may melt insulating snow cover and subject soils to more freeze-thaw cycles. The effect of freeze-thaw cycles on the microbial use of low molecular weight, dissolved organic carbon (LMW-DOC) is poorly understood. In this study, soils from the Arctic heath tundra, Arctic meadow tundra and a temperate grassland were frozen to -7.5 A degrees C and thawed once and three times. Subsequently, the mineralisation of 3 LMW-DOC substrates types (sugars, amino acids and peptides) was measured over an 8-day period and compared to controls which had not been frozen. This allowed the comparison of freeze-thaw effects between Arctic and temperate soil and between different substrates. The results showed that freeze-thaw cycles had no significant effect on C mineralisation in the Arctic tundra soils. In contrast, for the same intensity freeze-thaw cycles, a significant effect on C mineralisation was observed for all substrate types in the temperate soil although the response was substrate specific. Peptide and amino acid mineralisation were similarly affected by FT, whilst glucose had a different response. Further work is required to fully understand microbial use of LMW-DOC after freeze-thaw, yet these results suggest that relatively short freeze-thaw cycles have little effect on microbial use of LMW-DOC in Arctic tundra soils after thaw.

期刊论文 2016-12-01 DOI: 10.1007/s00300-016-1914-1 ISSN: 0722-4060
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页