共检索到 7

In order to investigate the frost-heaving characteristics of wintering foundation pits in the seasonal frozen ground area, an outdoor in-situ test of wintering foundation pits was carried out to study the changing rules of horizontal frost heave forces, vertical frost heave forces, vertical displacement, and horizontal displacement of the tops of the supporting piles under the effect of groundwater and natural winterization. Based on the monitoring condition data of the in-situ test and the data, a coupled numerical model integrating hydrothermal and mechanical interactions of the foundation pit, considering the groundwater level and phase change, was established and verified by numerical simulation. The research results show that in the silty clay-sandy soil strata with water replenishment conditions and the all-silty clay strata without water replenishment conditions, the horizontal frost heave force presents a distribution feature of being larger in the middle and smaller on both sides in the early stage of overwintering. With the extension of freezing time, the horizontal frost heave force distribution of silty clay-sand strata gradually changes from the initial form to the Z shape, while the all-silty clay strata maintain the original distribution characteristics unchanged. Meanwhile, the peak point of the horizontal frost heave force in the all-silty clay stratum will gradually shift downward during the overwintering process. This phenomenon corresponds to the stage when the horizontal displacement of the pile top enters a stable and fluctuating phase. Based on the monitoring conditions of the in-situ test, a numerical model of the hydro-thermo-mechanical coupling in the overwintering foundation pit was established, considering the effects of the groundwater level and ice-water phase change. The accuracy and reliability of the model were verified by comparison with the monitoring data of the in-situ test using FLAC3D finite element analysis software. The evolution of the horizontal frost heaving force of the overwintering foundation pit and the change rule of its distribution pattern under different groundwater level conditions are revealed. This research can provide a reference for the prevention of frost heave damage and safety design of foundation pit engineering in seasonal frozen soil areas.

期刊论文 2025-10-01 DOI: 10.1016/j.jobe.2025.113108

Pipelines are the primary mode of oil and gas transport in cold regions. Differential frost heaving of frozen and non-frozen soil masses can damage such pipelines, posing economic and environmental risks. The present study investigates the mechanical behaviors of buried pipelines under differential frost heaving forces. A discrete forecasting model of these mechanical behaviors based on frost heaving springs is proposed. The relationship between the frost heaving amount and force at any moment is established using the Takashi empirical equation and the corresponding development of frost depth. On this basis, the properties of nonlinear frost heaving springs are disclosed. A model of pipeline mechanical state is derived to understand the deformation and stress at any moment, allowing the dynamic prediction of mechanical behaviors. The model is applied to two case studies involving the Caen and Alaska buried pipelines. The modeling results agree well with measurements taken at these pipelines, and the discrete descriptions of their mechanical modes are effective. A sensitivity analysis of the modeling results for pipelines of different size was conducted, providing a theoretical foundation for the optimal design of buried pipelines in cold regions.

期刊论文 2025-01-02 DOI: 10.1038/s41598-024-84144-2 ISSN: 2045-2322

The risk of geohazards associated with frozen subgrades is well recognized, but a comprehensive framework to evaluate frost susceptibility from microstructural characteristics to macroscopic thermo-hydro-mechanical (THM) behaviors has not been established. This study aims to propose a simple framework for quantitatively assessing frost susceptibility and compressibility in frozen soils. A systematic THM model was devised to predict heat transfer, soil freezing characteristics, and stress states in frozen soils. Constant freezing experiments and oedometer compression tests were performed on bentonite clays under varying temperatures (-5 degrees C, -10 degrees C, and -20 degrees C) and stress levels to validate the proposed model. Additionally, soil electrical conductivity measurements were employed to assess the temperature- and stress-dependent volumetric and mechanical properties of frozen soils. The model used Fourier's law to compute the transient soil temperature profile and estimated the volume change and stress states based on the soil freezing characteristic curve. Experimental results showed that frost heave of bentonite reached between 9.0% and 26.6% of axial strain, which was largely predicted by the proposed model. It also demonstrated that the frost heave was mainly attributed to the fusion of the porewater. Additionally, the preconsolidation pressure of frozen soils exhibited a rapid increasing trend with decreasing temperature, which was explained by the temperature-dependent ice morphology in the soil interpore. Furthermore, the findings also demonstrated a remarkable sensitivity in the electrical conductivity in response to the soil temperature during the frost heave process and the stress state under the loading or unloading path.

期刊论文 2024-10-01 DOI: 10.1177/03611981241234920 ISSN: 0361-1981

Water migration behavior is the main cause of engineering disasters in cold regions, making it essential to understand its mechanisms and the resulting mechanical characteristics for engineering protection. This study examined the water migration process during soil freezing through both experimental and numerical simulations, focusing on the key mechanical outcomes such as deformation and pore water pressure. Initially, a series of controlled unidirectional freezing experiments were performed on artificial kaolin soil under various freezing conditions to observe the water migration process. Subsequently, a numerical model of water migration was formulated by integrating the partial differential equations of heat and mass transfer. The model's boundary conditions and relevant parameters were derived from both the experimental processes and existing literature. The findings indicate that at lower clay water content, the experimental results align closely with those of the model. Conversely, at higher water content, the modeled results of frost heaving were less pronounced than the experimental outcomes, and the freezing front advanced more slowly. This discrepancy is attributed to the inability of unfrozen water to penetrate once ice lenses form, causing migrating water to accumulate and freeze at the warmest ice lens front. This results in a higher ice content in the freezing zone than predicted by the model, leading to more significant freezing expansion. Additionally, the experimental observations of pore water pressure under freeze-thaw conditions corresponded well with the trends and peaks projected by the simulation results.

期刊论文 2024-09-01 DOI: 10.3390/app14188210

Soil frost deformation significantly influences engineering projects in cold regions. The anisotropic behavior of soil, involving surface and internal deformation in three dimensions (3D), introduces inaccuracies in evaluating freeze-thaw geological hazards. To explore the relationship between internal strain and surface displacement of soil in a 3D space during the freezing -thawing process, a platform for monitoring coupled surface -internal deformation in 3D were developed using binocular recognition technology and a novel 3D strain rosette. Subsequently, a freezing -thawing model test of soil in Dalian Offshore Airport filling is conducted using the platform. The results show that, the internal strain of soil is closely associated with the boundary conditions of the test unit. During freezing test, the vertical strain exhibits a more significant increase in comparison to the horizontal strain. Surface displacements in soil primarily occur during the initial freezing and thawing stages. The variation of surface horizontal displacement in each direction is minimal throughout the freezingthawing process. A surface freezing boundary leads to an increment in internal strain, while the deep frozen stress relief causes the soil surface expand during thawing. This study provides a suggestion for the control of the cold source in cold region engineering. (c) 2023 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BYNC -ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

期刊论文 2024-06-01 DOI: 10.1016/j.sandf.2024.101468 ISSN: 0038-0806

The subsurface structure of permafrost is of high significance to forecast landscape dynamics and the engineering stability of infrastructure under human impacts and climate warming, which is a modern challenge for Arctic communities. Application of the non-destructive method of geo-penetrating radar (GPR) survey is a promising way to study it. The study program, which could be used for planning and monitoring of measures of adaptation of Arctic communities to environmental changes is provided in this paper. The main principle was to use etalons of coupled radargrams and archive geological data to interpret changes in the permafrost structure from a grid of 5-10 m deep GPR transects. Here, we show the application of GPR to reconstruct and predict hazards of activation of cryogenic processes from the spatial variability in the structure of permafrost. The cumulative effects of the village and climate change on permafrost were manifested in changes in the active layer thickness from 0.5-1.0 m to up to 3.5 m. Despite that the permafrost degradation has declined due to the improved maintenance of infrastructure and the effects of ground filling application, the hazards of heaving and thermokarst remain for the built-up area in Lorino.

期刊论文 2020-02-01 DOI: 10.3390/geosciences10020057

In this article, we consider the problem of thermal response of the near-surface ice-rich permafrost to the effects of linear infrastructure and current climate change. First, we emphasize the scientific and practical significance of the study and briefly describe permafrost conditions and related hazards in the study area. Then we present a mathematical model which accounts for the actual process of soil thawing and freezing and consists of two nonlinear equations: heat conduction and moisture transfer. Numerical calculations were made to predict temperature and moisture conditions in the railroad embankment, taking into account solar radiation, snow cover, rainfall infiltration, and evaporation from the surface. The numerical results indicate that moisture migration and infiltration play the primary role in the development of frost heaving and thaw settlement. During winter, the frost-heave extent is monotonously increased due to pore moisture migration to the freezing front. Strong volume expansion (dilatation) is observed near the surface of the active layer with the onset of the warm season and meltwater infiltration. Settlement of the upper layers of the soil occurs in the summer months (June-August) when there is intense evaporation due to drying. Autumn rains stop the process of thaw settlement by increasing the soil moisture. The above processes are repeated cyclically every year. A frozen core shifts to the shaded side of the embankment under the influence of variations in the solar radiation. Over time, the total moisture content of the frozen core is increased which increases differential heaving and negatively affects the stress-strain state in the embankment. The quantitative and qualitative characteristics of the processes of frost heaving and thaw settlement are obtained in the annual and long-term cycles.

期刊论文 2020-01-01 DOI: 10.1007/978-981-15-0454-9_11 ISSN: 2366-2557
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页