共检索到 3

Coastal salinity typically alters the soil microbial communities, which subsequently affect the biogeochemical cycle of nutrients in the soil. The seasonal variation of the soil fungal communities in the coastal area, closely associated with plant population, is poorly understood. This study provides an insight into the fungal community's variations from autumn to winter and spring to summer at a well-populated area of salt-tolerant Tamarix chinensis and beach. The richness and diversity of fungal community were higher in the spring season and lower in the winter season, as showed by high throughput sequencing of the 18S rRNA gene. Ascomycota was the predominant phylum reported in all samples across the region, and higher difference was reported at order level across the seasonal variations. The redundancy analysis suggested that the abundance and diversity of fungal communities in different seasons are mainly correlated to total organic carbon and total nitrogen. Additionally, the saprotrophic and pathotrophic fungi decreased while symbiotic fungi increased in the autumn season. This study provides a pattern of seasonal variation in fungal community composition that further broadens our limited understanding of how the density of the salt-tolerant T. chinensis population of the coastal saline soil could respond to their seasonal variations.

期刊论文 2022-05-19 DOI: http://dx.doi.org/10.1007/s00248-021-01680-4 ISSN: 0095-3628

The response of microbial communities to the predicted rising temperatures in alpine regions might be an important part of the ability of these ecosystems to deal with climate change. Soil microbial communities might be significantly affected by elevated temperatures, which influence the functioning of soils within high-alpine ecosystems. To evaluate the potential of the permafrost microbiome to adapt to short-term moderate and extreme warming, we set up an incubation experiment with permafrost and active soil layers from northern and southern slopes of a high-alpine mountain ridge on Muot da Barba Peider in the Swiss Alps. Soils were acclimated to increasing temperatures (4-40 degrees C) for 26 days before being exposed to a heat shock treatment of 40 degrees C for 4 days. Alpha-diversity in all soils increased slightly under gradual warming, from 4 to 25 degrees C, but then dropped considerably at 40 degrees C. Similarly, heat shock induced strong changes in microbial community structures and functioning in the active layer of soils from both northern and southern slope aspects. In contrast, permafrost soils showed only minor changes in their microbial community structures and no changes in their functioning, except regarding specific respiration activity. Shifts in microbial community structures with increasing temperature were significantly more pronounced for bacteria than for fungi, regardless of the soil origin, suggesting higher resistance of high-alpine fungi to short-term warming. Firmicutes, mainly represented by Tumebacillus and Alicyclobacillaceae OTUs, increased strongly at 40 degrees C in active layer soils, reaching almost 50% of the total abundance. In contrast, Saccharibacteria decreased significantly with increasing temperature across all soil samples. Overall, our study highlights the divergent responses of fungal and bacterial communities to increased temperature. Fungi were highly resistant to increased temperatures compared to bacteria, and permafrost communities showed surprisingly low response to rising temperature. The unique responses were related to both site aspect and soil origin indicating that distinct differences within high-alpine soils may be driven by substrate limitation and legacy effects of soil temperatures at the field site.

期刊论文 2019-04-03 DOI: 10.3389/fmicb.2019.00668

The northern regions are experiencing considerable changes in winter climate leading to more frequent warm periods, rain-on-snow events and reduced snow pack diminishing the insulation properties of snow cover and increasing soil frost and freeze-thaw cycles. In this study, we investigated how the lack of snow cover, formation of ice encasement and snow compaction affect the size, structure and activities of soil bacterial and fungal communities. Contrary to our hypotheses, snow manipulation treatments over one winter had limited influence on microbial community structure, bacterial or fungal copy numbers or enzyme activities. However, microbial community structure and activities shifted seasonally among soils sampled before snow melt, in early and late growing season and seemed driven by substrate availability. Bacterial and fungal communities were dominated by stress-resistant taxa such as the orders Acidobacteriales, Chaetothyriales and Helotiales that are likely adapted to adverse winter conditions. This study indicated that microbial communities in acidic northern boreal forest soil may be insensitive to direct effects of changing snow cover. However, in long term, the detrimental effects of increased ice and frost to plant roots may alter plant derived carbon and nutrient pools to the soil likely leading to stronger microbial responses.

期刊论文 2018-09-01 DOI: 10.1093/femsec/fiy123 ISSN: 0168-6496
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页