共检索到 4

In contrast to boreal winter when extratropical seasonal predictions benefit greatly from ENSO-related teleconnections, our understanding of forecast skill and sources of predictability in summer is limited. Based on 40 years of hindcasts of the Canadian Seasonal to Interannual Prediction System, version 3 (CanSIPSv3), this study shows that predictions for the Northern Hemisphere summer surface air temperature are skillful more than 6 months in advance in several midlatitude regions, including eastern Europe-Middle East, central Siberia-Mongolia-North China, and the western United States. These midlatitude regions of statistically significant predictive skill appear to be connected to each other through an upper-tropospheric circumglobal wave train. Although a large part of the forecast skill for the surface air temperature and 500-hPa geopotential height is attributable to the linear trend associated with global warming, there is signifi- cant long-lead seasonal forecast skill related to interannual variability. Two additional idealized hindcast experiments are performed to help shed light on sources of the long-lead forecast skill using one of the CanSIPSv3 models and its uncoupled version. It is found that tropical ENSO-related sea surface temperature (SST) anomalies contribute to the forecast skill in the western United States, while land surface conditions in winter, including snow cover and soil moisture, in the Siberian and western U.S. regions have a delayed or long-lasting impact on the atmosphere, which leads to summer forecast skill in these regions. This implies that improving land surface initial conditions and model representation of land surface processes is crucial for the further development of a seasonal forecasting system.

期刊论文 2024-09-01 DOI: 10.1175/JCLI-D-24-0097.1 ISSN: 0894-8755

The direct perturbation of anthropogenic aerosols on Earth's energy balance [i.e., direct aerosol radiative forcing (DARF)] remains uncertain in climate models. In this study, we investigate the uncertainty of DARF associated with aerosol vertical distribution, using simulation results from 14 global models within phase 6 of the Coupled Model Intercomparison Project (CMIP6). The column mass loading for each aerosol species is first normalized to the multimodel average for each model, which is called the mass-normalization process. The unified radiative transfer model and aerosol optical parameter are used, so that the differences in the calculated DARF are solely attributed to the difference in aerosol vertical profiles. The global mean DARF values in 2014 with respect to 1850 before and after mass normalization are -0.77 +/- 0.52 and -0.81 +/- 0.12 W m(-2) respectively, assuming external mixing, which indicates that the intermodel difference in aerosol vertical distribution accounts for similar to 20% of the total DARF uncertainty. We further conduct two separate experiments by normalizing aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) profiles, respectively, and find that the vertical distribution of SSA results in larger DARF uncertainty (0.17 W m(-2)) than that of AOD (0.10 W m(-2)). Finally, compared with CALIPSO observation, CMIP6 models tend to produce higher aerosol layers. The bias in modeled aerosol profile with respect to CALIPSO leads to stronger DARF, especially for land regions.

期刊论文 2022-05-15 DOI: 10.1175/JCLI-D-21-0480.1 ISSN: 0894-8755

The large uncertainty in estimating the global aerosol radiative forcing (ARF) is one of the major challenges the climate community faces for climate projection. While the global-mean ARF may affect global quantities such as surface temperature, its spatial distribution may result in local thermodynamical and, thus, dynamical changes. Future changes in aerosol emissions distribution could further modulate the atmospheric circulation. Here, the effects of the spatial distribution of the direct anthropogenic ARF are studied using an idealized global circulation model, forced by a range of estimated-ARF amplitudes, based on the Copernicus Atmosphere Monitoring Service data. The spatial distribution of the estimated-ARF is globally decomposed, and the effects of the different modes on the circulation are studied. The most dominant spatial distribution feature is the cooling of the Northern Hemisphere in comparison to the Southern Hemisphere. This induces a negative meridional temperature gradient around the equator, which modulates the mean fields in the tropics. The ITCZ weakens and shifts southward, and the Northern (Southern) Hemisphere Hadley cell strengthens (weakens). The localization of the ARF in the Northern Hemisphere midlatitudes shifts the subtropical jet poleward and strengthens both the eddy-driven jet and Ferrel cell, because of the weakening of high-latitude eddy fluxes. Finally, the larger aerosol concentration in Asia compared to North America results in an equatorial superrotating jet. Understanding the effects of the different modes on the general circulation may help elucidate the circulation's future response to the projected changes in ARF distribution.

期刊论文 2018-09-01 DOI: 10.1175/JCLI-D-17-0694.1 ISSN: 0894-8755

Increases in the atmospheric concentration of carbon dioxide and associated changes in climate may exert large impacts on plant physiology and the density of vegetation cover. These may in turn provide feedbacks on climate through a modification of surface-atmosphere fluxes of energy and moisture. This paper uses asynchronously coupled models of global vegetation and climate to examine the responses of potential vegetation to different aspects of a doubled-CO2 environmental change, and compares the feedbacks on near-surface temperature arising from physiological and structural components of the vegetation response. Stomatal conductance reduces in response to the higher CO2 concentration, but rising temperatures and a redistribution of precipitation also exert significant impacts on this property as well as leading to major changes in potential vegetation structure. Overall, physiological responses act to enhance the warming near the surface, but in many areas this is offset by increases in leaf area resulting from greater precipitation and higher temperatures. Interactions with seasonal snow cover result in a positive feedback on winter warming in the boreal forest regions.

期刊论文 2000-03-01 DOI: 10.1046/j.1365-2699.2000.00160.x ISSN: 0960-7447
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页