共检索到 23

The areas covered by permafrost in the polar regions are vulnerable to rapid changes in the current climate. The well-studied near-surface active layer and permafrost zone are in contrast to the unknown exact shape of the bottom permafrost boundary. Therefore, the entire shape of permafrost between the upper and lower boundaries is not identified with sufficient accuracy. Since most of the factors affecting deep cryotic structures are subsurface in nature, their evolution in deeper layers is also relatively unclear. Here, we propose a hypothesis based on the results of geophysical studies regarding the shape of the permafrost in the coastal area of Svalbard, Southern Spitsbergen. In the article, we emphasize the importance of recognizing not only the uppermost active layer but also the bottom boundary of permafrost along with its transition zone, due to the underestimated potential role of its continuity in observing climate change. The lower permafrost boundary is estimated to range from 70 m below the surface in areas close to the shore to 180 m inland, while a continuous layer of an entirely frozen matrix can be identified with a thickness between 40 m and 100 m. We also hypothesized the presence of the possible subsea permafrost in the Hornsund. The influence of seawater intrusions, isostatic uplift of deglaciated areas, and surface-related processes that affect permafrost evolution may lead to extensive changes in the hy-drology and geology of the polar regions in the future. For all these reasons, monitoring, geophysical imaging and understanding the characteristics and evolution of deep permafrost structures requires global attention and scientific efforts.

2024-02-01 Web of Science

Ground ice distribution and abundance have wide-ranging effects on periglacial environments and possible impacts on climate change scenarios. In contrast, very few studies measure ground ice in the High Arctic, especially in polar deserts and where coarse surficial material complicates coring operations. Ground ice volumes and cryostructures were determined for eight sites in a polar desert, near Resolute Bay, Nunavut, chosen for their hydrogeomorphic classification. Dry, unvegetated polar desert sites exhibited ice content close to soil porosity, with a <45 cm thick ice-enriched transition zone. In wetland sites, suspended cryostructures and ice dominated cryofacies (ice content at least 2x soil porosity values) were prevalent in the upper similar to 2 m of permafrost. Average ground ice saturation at those locations exceeded porosity values by a factor between 1.8 and 20.1 and by up to two orders of magnitude at the similar to 10 cm vertical scale. Sites with the highest ice contents were historically submerged wetlands with a history of sediment supply, sustained water availability, and syngenetic and quasi-syngenetic permafrost aggradation. Ice enrichment in those environments were mainly caused by the strong upward freezing potential beneath the thaw front, which, combined with abundant water supply, caused ice aggradation and frost heaving to form lithalsa plateaus. Most of the sites already expressed cryostratigraphic evidence of permafrost degradation. Permafrost degradation carries important ecological ramifications, as wetland locations are the most productive, life-supporting oases in the otherwise relatively barren landscape, carrying essential functions linked with hydrological processes and nutrient and contaminant cycling.

2023-11-01 Web of Science

Arctic permafrost is degrading and is thus releasing nutrients, solutes, sediment and water into soils and freshwater ecosystems. The impacts of this degradation depends on the geochemical characteristics and in large part on the spatial distribution of ground ice and solutes, which is not well-known in the High Arctic polar desert ecosystems. This research links ground ice and solute concentrations, to establish a framework for identifying locations vulnerable to permafrost degradation. It builds on landscape classifications and cryostratigraphic interpretations of permafrost history. Well-vegetated wetland sites with syngenetic permafrost aggradation show a different geochemical signature from polar desert and epigenetic sites. In wetlands, where ground ice contents were high (<97% volume), total dissolved solute concentrations were relatively low (mean 283.0 +/- 327.8 ppm), reflecting a carbonate terrestrial/freshwater setting. In drier sites with epigenetic origin, such as polar deserts, ice contents are low (<47% volume), solute concentrations were high (mean 3248.5 +/- 1907.0 ppm, max 12055 ppm) and dominated by Na+ and Cl- ions, reflecting a post-glacial marine inundation during permafrost formation. Dissolved organic carbon and total dissolved nitrogen concentrations usually increased at the top of permafrost and could not be as clearly associated with permafrost history. The research shows that the geochemistry of polar desert permafrost is highly dependent on permafrost history, and it can be estimated using hydrogeomorphological terrain classifications. The lower ice content of polar desert sites indicates that these areas are more vulnerable to thaw relative to the ice-rich wetland sites, and the elevated solute concentrations indicate that these areas could mobilise substantial solutes to downstream environments, should they become hydrologically connected with future warming.

2023-06-01 Web of Science

Anthropogenic climate change threatens water storage and supply in the periglacial critical zone. Rock glaciers are widely distributed alpine aquifers with slower response to temperature increases, that provide the summer water flow of many alpine streams. Knowing the extent and makeup of rock glaciers is necessary to evaluate their potential for water supply. We used non-invasive methods, integrating geological, geomorphological, meteoro-logical, and geophysical information to characterize the internal structure and hydrology of the Upper Camp Bird rock glacier (UCBRG) located on level 3 of Camp Bird Mine in Ouray, Colorado, and assessed the applicability of two electromagnetic induction systems in this highly heterogeneous landform with a history of anthropogenic activity. The time-domain (G-TEMTM) system achieved deep subsurface penetration (similar to 100 m) and realistic modeling of the internal structure of the UCBRG: a shell of volcanic rock fragments (< 3 m thick; 1-100 Ohm-m), a meltwater component (10(2)-10(3) Ohm-m), located between 50 and 100 m near the toe (subpermafrost flow), and 1-30 m in the soundings farthest from the toe (suprapermafrost flow within the active layer), and a frozen component (permafrost 50-80 m thick; 10(3)-10(6) Ohm-m). The frequency-domain system, however, was highly susceptible to local environmental conditions, including anthropogenic objects (i.e., mine carts, lamp posts, tunnel tracks, etc.) and was unable to resolve UCBRG's internal makeup. The non-invasive methodology and general conceptual framework presented here can be used to characterize other alpine aquifers, contributing to the quantification of global water resources, and highlighting the importance of preserving rock glaciers as storage for critical water supply in the future.

2023-03-15 Web of Science

The role of snow is underrated in the dendrogeomorphic research in terms of the interpretation of the climate factors responsible for the geomorphic activity. We analysed snow parameters and the combined effect of spring and summer climate variables to interpret their role in debris flow/flood and flow-like landslide initiation in two Central European mid-mountain regions. We revisited the tree-ring based chronologies based on a total of 1043 trees for four debris flow/flood catchments and four flow-like landslide bodies. Three approaches were used to determine the event year, including a floating event-response index and different weighted index thresholds. In addition, data from precipitation and streamflow gauges were used to identify the best indicators of rapid snow melting and find the best explanatory climate factors during event years using logistic regression. We identified 24-40 event years with hydrogeomorphic activity and 10-29 years with flow-like landslide reactivations during 1961-2017. The amount of melted snowpack and rain-on-snow during spring were considered the best rapid snowmelt parameters obtained from the precipitation gauges due to highest correlations with the stream gauge data (R = 0.69-0.70). We identified very likely rapid snowmelt in seven debris flow/flood event years and six landslide event years since 1981. Furthermore, high maximum snowpack in spring combined with extreme oneday rainfall in summer were the best explanatory factors for hydrogeomorphic activity, but probably not during the high-magnitude debris flows, which were more dependent on the extreme summer rainfall alone. Landslide reactivations were most likely to occur during years with extreme one-day rainfall events in May to September preceded by a wet period since the last day of continuous snow cover. This study defines a step-by-step procedure to reveal the role of snowmelt and antecedent precipitation in dendrogeomorphic research and shows likely scenarios of geomorphic activity typical of the study area.

2022-09-01 Web of Science

Beavers have established themselves as a key component of low arctic ecosystems over the past several decades. Beavers are widely recognized as ecosystem engineers, but their effects on permafrost-dominated landscapes in the Arctic remain unclear. In this study, we document the occurrence, reconstruct the timing, and highlight the effects of beaver activity on a small creek valley confined by ice-rich permafrost on the Seward Peninsula, Alaska using multi-dimensional remote sensing analysis of satellite (Landsat-8, Sentinel-2, Planet CubeSat, and DigitalGlobe Inc./MAXAR) and unmanned aircraft systems (UAS) imagery. Beaver activity along the study reach of Swan Lake Creek appeared between 2006 and 2011 with the construction of three dams. Between 2011 and 2017, beaver dam numbers increased, with the peak occurring in 2017 (n = 9). Between 2017 and 2019, the number of dams decreased (n = 6), while the average length of the dams increased from 20 to 33 m. Between 4 and 20 August 2019, following a nine-day period of record rainfall (>125 mm), the well-established dam system failed, triggering the formation of a beaver-induced permafrost degradation feature. During the decade of beaver occupation between 2011 and 2021, the creek valley widened from 33 to 180 m (~450% increase) and the length of the stream channel network increased from ~0.6 km to more than 1.9 km (220% increase) as a result of beaver engineering and beaver-induced permafrost degradation. Comparing vegetation (NDVI) and snow (NDSI) derived indices from Sentinel-2 time-series data acquired between 2017 and 2021 for the beaver-induced permafrost degradation feature and a nearby unaffected control site, showed that peak growing season NDVI was lowered by 23% and that it extended the length of the snow-cover period by 19 days following the permafrost disturbance. Our analysis of multi-dimensional remote sensing data highlights several unique aspects of beaver engineering impacts on ice-rich permafrost landscapes. Our detailed reconstruction of the beaver-induced permafrost degradation event may also prove useful for identifying degradation of ice-rich permafrost in optical time-series datasets across regional scales. Future field- and remote sensing-based observations of this site, and others like it, will provide valuable information for the NSF-funded Arctic Beaver Observation Network (A-BON) and the third phase of the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) Field Campaign.

2021-12-01 Web of Science

The state of the cryosphere in tropical regions is of great importance because the temperature around the glaciers, permafrost and snow cover always fluctuates near the melting point. These thermal conditions and their high sensitivity to climate change cause the accelerated disappearance of these elements; therefore, it is important to know the climatic factors that regulate them, as well as the physical characteristics of each cryospheric element. Unlike glaciers, permafrost and snow cover have not been widely studied. In recent decades, the study of the glacial and periglacial environment has been carried out in intertropical mountains. However, despite the altitude of their relief and the frequent occurrence of snowfall in tropical high mountains, the conditions that determine such events have been barely analyzed; and in the case of Mexico, the volume of snowfall and its thickness have not been quantified either, as well as their corresponding duration. Consequently, this work is aimed to analyze the temperature and precipitation conditions that determine the snowfall at the higher part of the Nevado de Toluca volcano; at the same time, the conditions of the cryotic climate and their possible implication on the surface are studied. The analysis of data from 1965 to 2016, using frequency statistics, allowed to realize that snowfall occurs with low intensity, its accumulation being less than 10 cm thick and 10 mm of snow water equivalent, which causes the snowpack to stay only a few weeks on average. At the same time, it was determined that there is a significant increase in the number of freeze-thaw cycles. Therefore, due to the climate conditions and their influence on the mountain surface, it is probable that the bedrock is subject to a greater gelifraction dynamics, and the unconsolidated soil surface increases; the combination of the above could cause a greater geomorphological dynamic over time, particularly due to debris flows, and by water and wind erosion of the surface. This work is intended to serve as a reference for the high mountain environment in the intertropical regions.

2021-09-01 Web of Science

Thermokarst landslides (TL) caused by the thaw of ground ice in permafrost slopes are increasing on the Qinghai-Tibet Plateau (QTP), but the understanding of the spatially suitable environmental conditions including terrains and climate for them has not been fully established. Here, we applied multiple machine learning models and their ensemble to explore factors controlling the TL and map its susceptibility at a fine resolution. The models were calibrated and validated using a split-sample approach based on an inventory of TLs from the remote sensing data. The models indicated that summer air temperature and rainfall were the most two important factors controlling the occurrence and distribution of TLs, provided that other geomorphic conditions (i.e., slope, solar radiation, and fine soil) were suitable. The final ensemble susceptibility map based on downscaled climate data and terrain data suggested that ca. 1.4% of the QTP land was classified in high- to very high-susceptibility zone, which is likely to increase in response to future climate change. This study integrated local topography and climate in susceptibility modeling and provided new insights into the geomorphic sensitivity to climate change but also the engineering support over the QTP.

2021-07-01 Web of Science

Thermokarst lakes (TLs) caused by the thaw of massive ground ice in ice-rich permafrost landscapes are increasing and have strong impacts on the hydro-ecological environment and human infrastructure on the Qinghai-Tibet Plateau (QTP), however, its spatial distribution characteristics and environmental controls have not been underrepresented at the local scale. Here, we analyzed the spatial distribution of small TLs along the Qinghai-Tibet Engineering Corridor (QTEC) based on high-resolution (up to 2.0 m) satellite images. The TLs gathered in the plains and upland plateau and covered 8.3% of the QTEC land. We deployed a random-frost method to investigate the suitable environmental conditions for TLs. Climate including summer rainfall and the air temperature was the most important factor controlling the TL distribution, followed by topography and soil characteristics that affected the ground ice content. TL susceptibility was mapped based on the combinations of climate, soil, and topography grid data. On average, around 20% of the QTEC area was in a high to very-high-susceptibility zone that is likely to develop TLs in response to climate change. This study improved the understanding of controlling factors for TL development but also provided insights into the conditions of massive ground ice and was helpful to assess the impacts of climate change on ecosystem processes and engineering design.

2021-05-01 Web of Science

Remote sensing can be helpful in defining the dynamic of a high-latitude coastal environment where the role of cryogenic processes like sea-ice or permafrost are the main drivers together with storm surge and wind action. Here we examined the geomorphological dynamics of a beach located at Edmonson Point (74 degrees S) not far from the Italian Antarctic Station Mario Zucchelli between 1993 and 2019 using different remote sensing techniques and field measurements. Our data demonstrate that the average rate of surficial increase of the beach (0.002 +/- 0.032 m yr(-1)) was slightly higher than the uplift rate determined by previous authors (0-1 cm yr(-1)) in case of pure isostatic rebound. However, we suggest that the evolution of EPNB is likely due to the couple effect of vertical uplift and high wave-energy events. Indeed, the coastline accumulation could be related to the subsurface sea water infiltration and annually freezing at the permafrost table interface as aggradational ice as suggested by the ERT carried out in 1996. This ERT suggests the occurrence of saline frozen permafrost or hypersaline brines under the sea level while permafrost with ice occurred above the sea level. The beach also revealed areas that had quite high subsidence values (between 0.08 and 0.011 m yr(-1)) located in the area where ice content was higher in 1996 and where the active layer thickening and wind erosion could explain the measured erosion rates. Here, we also dated at the late morning of 15 February 2019 coastal flooding and defined a significant wave height of 1.95 m. During the high oceanic wave event the sea level increased advancing shoreward up to 360 m, three times higher than the previous reported storm surge (81 m) and with a sea level rise almost five times higher than has been previously recorded in the Ross Sea.

2021-02-01 Web of Science
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共23条,3页