共检索到 4

Miscanthus is a promising perennial lignocellulosic crop for biomass production. To avoid competing with arable land used for food crops to promote carbon neutrality, cultivating Miscanthus on marginal land, especially in saline soils in China, is a recommended strategy. However, the adaptability of Miscanthus species in saline soil remains largely unknown. In this study, a total of 354 genotypes, including Miscanthus sinensis, Miscanthus floridulus, Miscanthus sacchariflorus, Miscanthus lutarioriparius and interspecific species hybrids derived from M. sinensis and M. lutarioriparius, were evaluated under different planting times (May and August), salinity levels (low and moderate) and pest damage assessment by Helicoverpa armigera in the Yellow River Delta (YRD), in China. The significant effects of planting time on the adaptability of Miscanthus were observed. Planting in May in the YRD, Miscanthus had a lower establishment survival rate (28.76%) and overwintering rate (72.31%), but a dry weight higher than that of planting in August. In contrast, planting in August in the YRD had a very high establishment survival rate (91.14%) and overwintering rate (80.65%), which indicated August was the optimal month for planting Miscanthus in the YRD, while May could be suitable for screening salinity tolerance in Miscanthus. In addition, using the overall adaptability score calculated by establishment survival, overwintering ability, key agronomic traits and pest damage assessments to evaluate all genotypes in this study indicated that the adaptability of M. lutarioriparius was superior to other species. However, M. lutarioriparius is more sensitive to pest damage than others. Furthermore, interspecific hybrids in Miscanthus exhibited outstanding biomass production and adaptability in this region, indicating that creating hybrids would be the best breeding strategy for marginal lands. These results provide an important theoretical basis for the development of Miscanthus in saline soil in the YRD, China.

期刊论文 2025-07-01 DOI: 10.1111/jac.70083 ISSN: 0931-2250

Soil salinization represents an increasingly serious threat to agronomic productivity throughout the world, as rising ion concentrations can interfere with the growth and development of plants, ultimately reducing crop yields and quality. A combination of factors is driving this progressive soil salinization, including natural causes, global climate change, and irrigation practices that are increasing the global saline-alkali land footprint. Salt stress damages plants both by imposing osmotic stress that reduces water availability while also inducing direct sodium- and chlorine-mediated toxicity that harms plant cells. Vitis vinifera L. exhibits relatively high levels of resistance to soil salinization. However, as with other crops, grapevine growth, development, fruit yields, and fruit quality can all be adversely affected by salt stress. Many salt-tolerant grape germplasm resources have been screened in recent years, leading to the identification of many genes associated to salt stress and the characterization of the mechanistic basis for grapevine salt tolerance. These results have also been leveraged to improve grape yields through the growth of more tolerant cultivars and other appropriate cultivation measures. The present review was formulated to provide an overview of recent achievements in the field of research focused on grapevine salt tolerance from the perspectives of germplasm resource identification, the mining of functional genes, the cultivation of salt-tolerant grape varieties, and the selection of appropriate cultivation measures. Together, we hope that this systematic review will offer insight into promising approaches to enhancing grape salt tolerance in the future.

期刊论文 2024-02-08 DOI: 10.3389/fpls.2024.1353436 ISSN: 1664-462X

Lawns play a key role in enhancing public spaces, preventing soil erosion, and acting as barriers against dust and sludge. In Brazil, Paspalum notatum is widely cultivated for its adaptability to the country's ecosystems and the availability of native ecotypes. However, soil salinization, a growing ecological concern, can limit lawn growth due to sodium and chloride ion toxicity. This study aimed to identify the most tolerant among five genotypes (Arua & iacute; and Tiriba cultivars, BRA 010006 and BRA 019178 accessions and the commercial species Axonopus fissifolius) subjected to salinity levels (0.5, 1.5, 3.0, 4.5, and 6.0 dS m(-1)). Analyzed variables included Na and Cl contents in plants, growth parameters (leaf and root dry mass and soil coverage), and morphological symptoms. No significant changes in leaf color or damage compromising aesthetics or functionality at salinity levels from 0.5 to 1.5 dS m(-1), with only occasional yellowing or minor scorch. Higher salinity led to leaf burn and yellowing, particularly in accession BRA 010006 and the control. Sodium and chloride contents, especially sodium, was higher in roots than leaves. Accession BRA 019178, followed by cultivars Arua & iacute; and Tiriba, demonstrated moderate tolerance, maintaining satisfactory soil coverage and dry mass across the tested salinity levels. These findings highlight the importance of selecting native turfgrasses with enhanced salt tolerance for landscaping applications in saline-prone areas.

期刊论文 2024-01-01 DOI: 10.1590/2447-536X.v30.e242812

The present study aimed to identify and characterize new sources of salt tolerance among 94 rice genotypes from varied geographic origins. The genotypes were divided into five groups based on their morphological characteristics at both vegetative and reproductive stages using salinity scores from the Standard Evaluation System (SES). The experiment was designed as per CRD (Completely Randomized Design) with two sets of salinity treatments for 8 dS/meter and 12 dS/meter, respectively compared with one non-salinized control set. Using a Soil Plant Analysis Development (SPAD) meter, assessments of the apparent chlorophyll content (greenness) of the genotypes were done to comprehend the mechanism underlying their salt tolerance. To evaluate molecular genetic diversity, a panel of 1 K RiCA SNP markers was employed. Utilizing TASSEL 5.0 software, 598 filtered SNPs were used for molecular analysis. Whole-genome association studies (GWAS) were also used to investigate panicle number per plant (pn, tiller number per plant (till), SPAD value (spad), sterility (percent) (str), plant height (ph) and panicle length (pl). It is noteworthy that these characteristics oversee conveying the visible signs of salt damage in rice. Based on genotype data, diversity analysis divided the germplasm groups into four distinct clusters (I, II, III and IV). For the traits studied, thirteen significant marker -trait associations were discovered. According to the phenotypic screening, seven genotypes namely Koijuri, Asha, Kajal, Kaliboro, Hanumanjata, Akundi and Dular, are highly tolerant to salinity stress. The greenness of these genotypes was found to be more stable over time, indicating that these genotypes are more resistant to stress. Regarding their tolerance levels, the GWAS analysis produced comparable results, supporting that salinity -tolerant genotypes having minor alleles in significant SNP positions showed more greenness during the stress period. The Manhattan plot demonstrated that at the designated significant SNP position, the highly tolerant genotypes shared common alleles. These genotypes could therefore be seen as important genomic resources for accelerating the development and release of rice varieties that are tolerant to salinity.

期刊论文 2024-01-01 DOI: 10.14715/cmb/2024.70.2.2 ISSN: 0145-5680
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页