在列表中检索

共检索到 2

Laohugou glacier No. 12 (LHG12), located in the northeast of the Qinghai-Tibet Plateau, is the largest valley glacier in the Qilian mountains. Since 1957, LHG12 has shrunk significantly. Due to the limitations of in situ observations, simulations and investigations of LHG12 have higher levels of uncertainty. In this study, consumer-level, low-altitude microdrones were used to conduct repeated photogrammetry at the lower part of LHG12, and a digital orthophoto map (DOM) and a digital surface model (DSM) with a resolution at the centimeter scale were generated, from 2017 to 2021. The dynamic parameters of the glacier were detected by artificial and automatic extraction methods. Using a combination of GNSS and drone-based data, the dynamic process of LHG12 was analyzed. The results show that the terminus of LHG12 has retreated by 194.35 m in total and by 19.44 m a(-1) on average during 2008-2021. The differential ablation leading to terminus retreat distance markedly increased during the study period. In 2019-2021, the maximum annual surface velocity was 6.50 cm day(-1), and during ablation season, the maximum surface velocity was 13.59 cm day(-1), 52.17% higher than it is annually. The surface parameters, motion, and mass balance characteristics of the glacier had significant differences between the west and east branches. The movement in the west branch is faster than it is in the east branch. Because of the extrusion of the two ice flows, there is a region with a faster surface velocity at the ablation area. The ice thickness of LHG12 is decreasing due to intensified ablation, leading to a deceleration in the surface velocity. In large glaciers, this phenomenon is more obvious than it is in small glaciers in the Qilian mountains.

期刊论文 2022-07-01 DOI: http://dx.doi.org/10.3390/rs14143315

The Mt.Tomur glaciers, in the Tian Shan mountains of Western China, are usually debris-covered, and due to climate change, glacial hazards are becoming more frequent in this region. However, no changes in the long-time series of glacier surface velocities have been observed in this region. Conducting field measurements in high-altitude mountains is relatively difficult, and consequently, the dynamics and driving factors are less studied. Here, image-correlation offset tracking using Landsat images was exploited to estimate the glacier surface velocity of glaciers in the Mt.Tomur region from 2000 to 2020 and to assess glacier ice thickness. The results show that the glacier surface velocity in the Mt.Tomur region showed a significant slowdown during 2000-2020, from 6.71 +/- 0.66 m a(-1) to 3.95 +/- 0.66 m a(-1), an overall decrease of 41.13%. The maximum glacier ice thickness in the Mt.Tomur region was estimated based on the ice flow principle being 171.27 +/- 17.10 m, and the glacier average thickness is 50.00 +/- 5.0 m. Glacier thickness at first increases with increasing altitude, showing more than 100 +/- 10 m ice thickness between 3400 m and 4300 m, and then decreases with further increases in altitude. The reliability of the surface velocity and ice thickness obtained from remote sensing was proved using the measured surface velocity and ice thickness of Qingbingtan glacier No. 72 stall (the correlation coefficient R-2 > 0.85). The debris cover has an overall mitigating effect on the ablation and movement rate of Qingbingtan Glacier No. 72; however, it has an accelerating effect on the ablation and movement rate of glacier No. 74.

期刊论文 2020-06-12 DOI: http://dx.doi.org/10.3390/rs15010150
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页