This study analyzes the forest flammability hazard in the south of Tyumen Oblast (Western Siberia, Russia) and identifies variation patterns in fire areas depending on weather and climate characteristics in 2008-2023. Using correlation analysis, we proved that the area of forest fires is primarily affected by maximum temperature, relative air humidity, and the amount of precipitation, as well as by global climate change associated with an increase in carbon dioxide in the atmosphere and the maximum height of snow cover. As a rule, a year before the period of severe forest fires in the south of Tyumen Oblast, the height of snow cover is insignificant, which leads to insufficient soil moisture in the following spring, less or no time for the vegetation to enter the vegetative phase, and the forest leaf floor remaining dry and easily flammable, which contributes to an increase in the fire area. According to the estimates of the CMIP6 project climate models under the SSP2-4.5 scenario, by the end of the 21st century, a gradual increase in the number of summer temperatures above 35 degrees C is expected, whereas the extreme SSP5-8.5 scenario forecasts the tripling in the number of such hot days. The forecast shows an increase of fire hazardous conditions in the south of Tyumen Oblast by the late 21st century, which should be taken into account in the territory's economic development.
2024-12-01 Web of ScienceThe degradation of permafrost in the Northern Hemisphere is expected to persist and potentially worsen as the climate continues to warm. Thawing permafrost results in the decomposition of organic matter frozen in the ground, which stores large amounts of soil organic carbon (SOC), leading to carbon being emitted into the atmosphere in the form of carbon dioxide and methane. This process could potentially contribute to positive feedback between global climate change and permafrost carbon emissions. Accurate projections of permafrost thawing are key to improving our estimates of the global carbon budget and future climate change. Using data from the latest generation of climate models (CMIP6), this paper explores the challenges involved in assessing the annual active layer thickness (ALT), defined as the maximum annual thaw depth of permafrost, and estimated carbon released under various Shared Socioeconomic Pathway (SSP) scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). We find that the ALT estimates derived from CMIP6 model soil temperatures show significant deviations from the observed ALT values. This could lead to inconsistent estimates of carbon release under climate change. We propose a simplified approach to improve the estimate of the changes in ALT under future climate projections. These predicted ALT changes, combined with present-day observations, are used to estimate vulnerable carbon under future climate projections. CMIP6 models project ALT changes of 0.1-0.3 m per degree rise in local temperature, resulting in an average deepening of approx. 1.2-2.1 m in the northern high latitudes under different scenarios. With increasing temperatures, permafrost thawing starts in Southern Siberia, Northern Canada, and Alaska, progressively extending towards the North Pole by the end of the century under high emissions scenarios (SSP5-8.5). Using projections of ALT changes and vertically resolved SOC data, we estimate the ensemble mean of decomposable carbon stocks in thawed permafrost to be approximately 115 GtC (gigatons of carbon in the form of CO2 and CH4) under SSP1-2.6, 180 GtC under SSP2-4.5, 260 GtC under SSP3-7.0, and 300 GtC under SSP5-8.5 by the end of the century.
2024-11-18 Web of ScienceArctic fjords are hotspots of marine carbon burial, with diatoms playing an essential role in the biological carbon pump. Under the background of global warming, the proportion of diatoms in total phytoplankton communities has been declining in many high-latitude fjords due to increased turbidity and oligotrophication resulting from glacier melting. However, due to the habitat heterogeneity among Svalbard fjords, diatom responses to glacier melting are also expected to be complex, which will further lead to changes in the biological carbon pumping and carbon sequestration. To address the complexity, three short sediment cores were collected from three contrasting fjords in Svalbard (Krossfjorden, Kongsfjorden, Gronfjorden), recording the history of fjord changes in recent decades during significant glacier melting. The amino acid molecular indicators in cores K4 and KF1 suggested similar organic matter degradation states between these two sites. In contrast to the turbid Kongsfjorden and Gronfjorden, preserved fucoxanthin in Krossfjorden indicated a continuous increase in diatoms since the mid-1980s, corresponding to a 59 % increase in biological carbon pumping, as quantified by the delta C-13 of sedimentary organic carbon. The increasing biological carbon pumping in Krossfjorden is further attributed to its hard rock types in the glacier basin, compared to Kongsfjorden and Gronfjorden, which are instead covered by soft rocks, as confirmed by a one-dimensional model. Given the distribution of rock types among basins in Svalbard, we extrapolate our findings and propose that approximately one-fifth of Svalbard's fjords, especially those with hard rock basins and persistent marine-terminated glaciers, still have the potential for an increase in diatom fractions and efficient biological carbon pumping. Our findings reveal the complexity of fjord phytoplankton responses and biological carbon pumping to increasing glacier melting, and underscore the necessity of modifying Arctic marine carbon feedback to climate change based on results from fjords underlain by hard rocks.
2024-11-15 Web of ScienceMountain permafrost extends over a vast area throughout the Chilean and Argentinean Andes, making it a key component of these mountain ecosystems. To develop an overview of the current state of knowledge on southern Andean permafrost, it is essential to outline appropriate research strategies in a warmer climate context. Based on a comprehensive review of existing literature, this work identifies eight main research themes on mountain permafrost in the Chilean and Argentinean Andes: paleoenvironmental reconstructions, permafrost-derived landforms inventories, permafrost distribution models, internal structure analysis, hydrogeochemistry, permafrost dynamics, geological hazards, and transitional landscape studies. This extensive review work also highlights key debates concerning the potential of permafrost as a water resource and the factors influencing its distribution. Furthermore, we identified several challenges the scientific community must address to gain a deeper understanding of mountain permafrost dynamics. Among these challenges, we suggest tackling the need to broaden spatial focus, along with the use of emerging technologies and methodologies. Additionally, we emphasize the importance of developing interdisciplinary approaches to effectively identify the impacts of climate change on mountain permafrost. Such efforts are essential for adequately preparing scientists, institutional entities, and society to address future scenarios.
2024-11-15 Web of ScienceFrozen ground (FG) plays an important role in global and regional climates and environments through changes in land freeze-thaw processes, which have been conducted mainly in different regions. However, the changes in land surface freeze-thaw processes under climate change on a global scale are still unclear. Based on ERA5-Land hourly land skin temperature data, this study evaluated changes in the global FG area, global land surface first freeze date (FFD), last freeze date (LFD) and frost-free period (FFP) from 1950 to 2020. The results show that the current FG areas (1991-2020 mean) in the Northern Hemisphere (NH), Southern Hemisphere (SH), and globe are 68.50 x 10(6), 9.03 x 10(6), and 77.53 x 10(6) km(2), which account for 72.4%, 26.8%, and 60.4% of the exposed land (excluding glaciers, ice sheets, and water bodies) in the NH, SH and the globe, respectively; further, relative to 1951-1980, the FG area decreased by 1.9%, 8.8%, and 2.8%, respectively. Seasonally FG at lower latitudes degrades to intermittently FG, and intermittently FG degrades to non-frozen ground, which caused the global FG boundary to retreat to higher latitudes from 1950 to 2020. The annual FG areas in the NH, SH, and globe all show significant decreasing trends ( p < 0.05) from 1950 to 2020 at -0.32 x 10(6), -0.22 x 10(6), and -0.54 x 10(6) km(2) per decade, respectively. The FFP prolongation in the NH is mainly influenced by LFD advance, while in the SH it is mainly controlled by FFD delay. The prolongation trend of FFP in the NH (1.34 d per decade) is larger than that in the SH (1.15 d per decade).
2024-11The distribution of freezing and thawing within rock masses is time varying (day to day or season to season) and controls the effectiveness of the frost cracking processes from the surface until various depths. These processes are major contributors to the development of rock instabilities. By altering the thermal regime of rockwalls, global warming could have a major impact on rockfall dynamic by the end of the 21st century. This study seeks to improve our understanding of the influence of this warming on (i) the distribution of freezing and thawing within rock masses, (ii) the effectiveness of frost cracking and (iii) the frequency and magnitude of rockfalls. Thermistor sensors inserted in a 5.5-m horizontal borehole and a weather station were installed on a vertical rockwall located in the northern Gasp & eacute; Peninsula (Canada). This instrumentation was used to calculate the surface energy balance of the rockwall and to measure and model its thermal regime at depth over a period of 28 months. Combining locally recorded historical air temperature data with simulated future data (scenarios RCP4.5 and RCP8.5) made it possible to extend the rockwall thermal regime model over the period 1950-2100. The effectiveness of frost cracking over this 150-year period has been quantified using a thermomechanical model. Depending on the scenario, warming of 3.3 degrees C to 6.2 degrees C is expected on the northern Gasp & eacute; Peninsula by the end of the 21st century. This rapid warming is likely to decrease the maximum depth reaches by the seasonal frost by 1-2 m and shorten its duration by 1-3 months. The frequency of freeze-thaw cycles could increase twelvefold in January. Frost cracking effectiveness should intensify around 70 cm in depth and disappear beyond that (RCP4.5) or diminish starting at 10 cm in depth (RCP8.5). In areas subject to seasonal freeze-thaw cycles, decimetric rockfall frequency could grow considerably in winter but be significantly reduced in fall and spring. Furthermore, frost cracking would cease contributing to the development of larger magnitude instabilities. Depending on the scenario, warming of 3.3 degrees C (RCP4.5) to 6.2 degrees C (RCP8.5) is expected on the northern Gasp & eacute; Peninsula by the end of the 21st century. By altering the thermal regime of rockwalls, the global warming could have a major impact on rockfall dynamic. In regions subject to seasonal freeze-thaw cycles, small magnitude rockfall frequency could grow considerably in winter but be significantly reduced in fall and spring. Frost weathering would cease contributing to the development of larger magnitude instabilities. image
2024-09-15 Web of ScienceEstimation of evapotranspiration (ETa) change on the Tibetan Plateau (TP) is essential to address the water requirement of billions of people surrounding the TP. Existing studies have shown that ETa estimations on the TP have a very large uncertainty. In this article, we discuss how to more accurately quantify ETa amount and explain its change on the TP. ETa change on the TP can be quantified and explained based on an ensemble mean product from climate model simulations, reanalysis, as well as ground-based and satellite observations. ETa on the TP experienced a significant increasing trend of around 8.4 +/- 2.2 mm (10 a)-1 (mean +/- one standard deviation) during 1982-2018, approximately twice the rate of the global land ETa (4.3 +/- 2.1 mm (10 a)-1). Numerical attribution analysis revealed that a 53.8% TP area with the increased ETa was caused by increased temperature and 23.1% part was due to soil moisture rising, because of the warming, melting cryosphere, and increased precipitation. The projected future increase in ETa is expected to cause a continued acceleration of the water cycle until 2100. (c) 2024 Science China Press. Published by Elsevier B.V. and Science China Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
2024-06-30 Web of SciencePermafrost in Northeastern China is not only controlled by latitude and elevation, but also locally environmental factors, such as vegetation cover and human activities. During 2009-2022, thinning active layer, increasing annual maximum frost depth in talik zones and lowering ground temperature above the depth of dividing point (DDP) between permafrost cooling and warming have been observed in many places, possibly due to the global warming hiatus (GWH). However, the responses of permafrost below DDP did not show a clear trend to the GWH, despite an evident ground warming. The warming and degradation of permafrost below DDP in the Da Xing'anling Mountains are more strongly influenced by the overall climate warming than by regional GWH. This study improves our understanding of changing permafrost temperature and its drivers. It also helps to provide data support and references for the management of the ecological and hydrological environment of the northern Da Xing'anling Mountains and the Heilongjiang-Amur River Basin.
2024-06-01 Web of ScienceFrozen ground (FG) plays an important role in global and regional climates and environments through changes in land freeze-thaw processes, which have been conducted mainly in different regions. However, the changes in land surface freeze-thaw processes under climate change on a global scale are still unclear. Based on ERA5-Land hourly land skin temperature data, this study evaluated changes in the global FG area, global land surface first freeze date (FFD), last freeze date (LFD) and frost-free period (FFP) from 1950 to 2020. The results show that the current FG areas (1991-2020 mean) in the Northern Hemisphere (NH), Southern Hemisphere (SH), and globe are 68.50 x 10(6), 9.03 x 10(6), and 77.53 x 10(6) km(2), which account for 72.4%, 26.8%, and 60.4% of the exposed land (excluding glaciers, ice sheets, and water bodies) in the NH, SH and the globe, respectively; further, relative to 1951-1980, the FG area decreased by 1.9%, 8.8%, and 2.8%, respectively. Seasonally FG at lower latitudes degrades to intermittently FG, and intermittently FG degrades to non-frozen ground, which caused the global FG boundary to retreat to higher latitudes from 1950 to 2020. The annual FG areas in the NH, SH, and globe all show significant decreasing trends ( p < 0.05) from 1950 to 2020 at -0.32 x 10(6), -0.22 x 10(6), and -0.54 x 10(6) km(2) per decade, respectively. The FFP prolongation in the NH is mainly influenced by LFD advance, while in the SH it is mainly controlled by FFD delay. The prolongation trend of FFP in the NH (1.34 d per decade) is larger than that in the SH (1.15 d per decade).
2024-04-01 Web of ScienceBackgroundGrasslands in drylands are increasingly influenced by human activities and climate change, leading to alterations in albedo and radiative energy balance among others. Surface biophysical properties and their interactions change greatly following disturbances. However, our understanding of these processes and their climatic impacts remains limited. In this study, we used multi-year observations from satellites and eddy-covariance towers to investigate the response of albedo to variables closely associated with human disturbances, including vegetation greenness (EVI) and surface soil volumetric water content (VWC), as well as snow cover and clearness index (Ta) for their potential relationships.ResultsEVI and VWC during the growing season were the primary factors influencing albedo. EVI and VWC were negatively correlated with albedo, with VWC's total direct and indirect impacts being slightly smaller than those of EVI. During the non-growing season, snow cover was the most influential factor on albedo. VWC and Ta negatively affected albedo throughout the year. We estimated the impact of variations in EVI and VWC on climate to be in the range of 0.004 to 0.113 kg CO2 m-2 yr-1 in CO2 equivalent.ConclusionsThis study indicates the significant impacts of climate change and human disturbances on vulnerable grassland ecosystems from the perspective of altered albedo. Changes in vegetation greenness and soil properties induced by climate change and human activities may have a substantial impact on albedo, which in turn feedback on climate change, indicating that future climate policies should take this factor into consideration.
2024-03-04 Web of Science